Tuesday, February 8, 2022 11:26 PM

Hello everyone! My name is Gregory Elias. I was a student in MATH 1554 for the fall 2021 semester.
I realized early on that MATH 1554 was really fast paced and it was hard to keep track of class notes. That's why I painstakingly wrote all of my professor's lecture notes and all studio worksheet questions \& answers in a OneNote/LaTeX format and compiled them into a PDF so that you the reader - never miss material from any lecture or studio.

Enjoy!

If you have any questions, email me at: elias.gregory.w@gmail.com or gelias7@gatech.edu
P.S. Great power comes great responsibility. Don't use this as an alternative of attending lecture, it's really important that you do so, especially in this class!

Unit 1

Saturday, November 13, 2021

Material Covered:
Chapter 1: Linear Equations in Linear Algebra

- Section 1.1 : Systems of Linear Equations
- Section 1.2 : Row Reduction and Echelon Forms
- Section 1.3 : Vector Equations
- Section 1.4 : The Matrix Equation
- Section 1.5 : Solution Sets of Linear Systems
- Section 1.7 : Linear Independence
- Section 1.8 : An Introduction to Linear Transforms
- Section 1.9 : Linear Transforms

Chapter 2: Matrix Algebra

- Section 2.1 : Matrix Operations

Lecture 1

Monday, August 23, 2021 3:49 PM

General Information:

- Professor: Victor Vilaça Da Rocha
- School Email: vrocha3@gatech.edu
o Personal Email: v.vilaca.da.rocha@gmail.com
- Use MyLab for assignments and textbook

Notes:

Section 1.1: Systems of Linear Equations

Linear Equations:

- A linear equation has the form
o $A_{1} X_{1}+A_{2} X_{2}+\ldots+A_{n} X_{n}=b$
- $A_{1} \ldots A_{n}$ are coefficients
- $X_{1} \ldots X_{n}$ are variables
- " n " is the dimension
- Examples:
o $\ln 2 \mathrm{D}: 6 \mathrm{x}_{1}+4 \mathrm{x}_{2}=5$
- A line in 2D
- $\ln 3 D 9 x_{1}+7 x_{2}+2 x_{3}=8$
- A plane in 3D
- *Non linear equations:
- $X_{1}{ }^{2}+X_{2}{ }^{7}=4$
- $\ln (x)+1 / x+x^{143}=e^{x}$
- $4 x_{1} x_{2}=3$

Systems of Linear Equations:

- A system of linear equations have more than one equation. For example:
- $x_{1}+1.5 x_{2}+\pi x_{3}=4$
o $5 X_{1}+\quad 7 x_{3}=5$
- A system can have a unique solution, no solution, or an infinite number of solutions.
o Two lines that intersect have one solution
- Two parallel lines that have different heights have no solution
- Two parallel lines that have the same height have infinitely many solutions.
- A equation $A_{1} X_{1}+A_{2} X_{2}+A_{3} X_{3}=b$ defines a plane in \mathbb{R}^{3}.
o The solution to a system of 3 equations is the set of intersections of the planes.

Row Reduction by Elementary Row Operations:

1. (Replacement/Addition) Add a multiple of one row to another
2. (Interchange) Interchange two rows
3. (Scaling) Multiply a row by a non-zero scalar

Example:

$X_{1}-2 X_{2}+X_{3}=0$	R_{1}
$2 X_{2}-8 X_{3}=8$	R_{2}
$5 X_{1}-5 X_{3}=10$	R_{3}

X_{1}	$-7 X_{3}=8$	$R_{3} \leftarrow R_{2}+R_{1}$
	$2 X_{2}-8 X_{3}=8$	\sim
X_{1}	$-X_{3}=2$	$R_{3} \leftarrow 1 / 5 R_{3}$

$X_{1}-7 X_{3}=8$	$R_{3} \leftarrow R_{3}-R_{1}$
$X_{2}-4 X_{3}=4$	\sim
$6 X_{3}=-6$	$R_{2} \leftarrow 1 / 2 R_{2}$

[^0]
Studio 1

Tuesday, August 24, 2021 12:34 PM

TA: Jad Salem

- Email: Jsalem7@gatech.edu
- Office Hours: ?

Def. A system of equations is consistent if there is at least 1 solution

No solutions:
$X+Y=1$ Inconsistent
$X+Y=2$ Sol: UND

One Solution:

$2 X+4 Y=2$	Consistent
$3 X+4 Y=2$	Sol: $x=0, y=0.5$

Infinite Solutions:

$X+Y=1$	Consistent
$2 X+2 Y=2$	Sol: $y=1-x$

Lecture 2

Wednesday, August 25, 2021 3:33 PM

Notes:

Augmented Matrices

It is redundant to write $x 1, x 2, x 3$ again and again, so we rewrite systems using matrices. For example,
$x_{1}-2 x_{2}+x_{3}=0$
$2 x_{2}-8 x_{3}=8$
$5 x_{1}-\quad 5 x_{3}=10$
can be written as the augmented matrix,
$\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10\end{array}\right)$

The vertical line reminds us that the first three columns are the coefficients to our variables x_{1}, x_{2}, and x_{3}.

Consistent Systems and Row Equivalence

Definition (Consistent)

- A linear system is consistent if it has at least one solution.

Definition (Row Equivalence)

- Two matrices are row equivalent if a sequence of elementary row operations transforms one matrix into the other.

Note: if the augmented matrices of two linear systems are row equivalent, then they have the same solution set.

Fundamental Questions

Two questions that we will revisit many times throughout our course.

1. Does a given linear system have a solution? (Is consistent)
2. If it is consistent, is the solution unique?
3. How do you find the solutions?

Section 1.2: Row Reduction and Echelon Forms

A rectangular matrix is in echelon form if

1. All zero rows (if any are present) are at the bottom.
2. The first non-zero entry (or leading entry) of a row is to the right of any leading entries in the row above it (if any).
3. All elements below a leading entry (if any) are zero.

A matrix in echelon form is in row reduced echelon form (RREF) if

1. All leading entries, if any, are equal to 1 .
2. Leading entries are the only nonzero entry in their respective column.
$A=\left(\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right)$ not in Echelon Form.
$B=\left(\begin{array}{cc}0 & \pi \\ 0 & 0\end{array}\right)$ in Echelon Form.
$C=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ not in Echelon Form.
$D=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in (Row Reduced) Echelon Form

Example of a Matrix in Echelon Form
$\left(\begin{array}{llllllllll}0 & ■ & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \square & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \square & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ■ & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & *\end{array}\right)$

To be in RREF:

1. $\square=1$
2. Everything above \quad must be 0 .

Example of RREF:

$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$	EF
$\mathrm{B}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$	RREF
$\mathrm{C}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right.$	(NO)
$\mathrm{D}=\left[\begin{array}{lll}0 & 6 & 3 \\ 0\end{array}\right]$	EF
$\mathrm{E}=\left[\begin{array}{lll}1 & 17 & 0 \\ 0 & 0 & 1\end{array}\right]$	RREF

Definition: Pivot Position, Pivot Column

- A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A.
- A pivot column is a column of A that contains a pivot position.

| $\left[\begin{array}{ccc\|c}0 & -3 & -6 & 4 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3\end{array}\right]$ | R_{1}, R_{2}, R_{3}
 $\left[\begin{array}{ccc\|c}-2 & -3 & 0 & 3 \\ -1 & -2 & -1 & 3 \\ 0 & -3 & -6 & 4\end{array}\right]$
 $\left[\begin{array}{ccc\|c}-2 & -3 & 0 & 3 \\ 0 & -1 & -2 & 3 \\ 0 & -3 & -6 & 4\end{array}\right]$
 $\left[\begin{array}{ccc\|c}-2 & -3 & 0 & 3 \\ 0 & -1 & -2 & 3 \\ 0 & 0 & 0 & -5\end{array}\right]$$R_{3} \leftarrow R_{3}-R_{1}-3 R_{1}$ |
| :---: | :--- | :--- |

Row Reduction Algorithm

- The algorithm we used in the previous example produces a matrix in RREF.

Step 1a:	Swap the 1st row with a lower one so the leftmost nonzero entry is in the 1st row
Step 1b:	Scale the 1st row so that its leading entry is equal to 1
Step 1c:	Use row replacement so all entries below this 1 are 0
Step 2a:	Swap the 2nd row with a lower one so that the leftmost nonzero entry below 1st row is in the 2nd row
etc. . . .	Now the matrix is in echelon form, with leading entries equal to 1.
Last step:	Use row replacement so all entries above each leading entry are 0, starting from the right.

Studio 2

Thursday, August 26, 2021 12:30 PM

General Information:
Office hours: 4-5 Tuesday (MathLab)

Notes:
$x+3 y=2$
$3 x+2 y=1$
$\left(\begin{array}{lll}1 & 3 & 2 \\ 3 & 2 & 1\end{array}\right)$ Augmented Matrix
$\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)$ Coefficient Matrix
Pivot: The first non-zero entry in a row.

Worksheet 1.2

1a.) What are some of the differences between echelon form and row reduced echelon form ((RREF)? List at least three.

1. All pivots $=1$ in RREF
2. Pivots are the only nonzero entry in a column in RREF
3. RREF is unique

1b.) How can we use row reduced to determine whether an augmented matrix corresponds to a consistent system?

1. Reduce to RREF \& if there is a pivot in the rightmost column (in an augment matrix), it is inconsistent.
2.) Which matrices are in RREF? In echelon form?
$A=\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)\{$ RREF $\}$
$B=\left(\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\{E F\}$
$\left.C=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 0 & 5 & 5\end{array}\right)=F\right\}$
3.) List all 3×2 matricies in RREF. Use * for entries that can be arbitrary.
$\left.\begin{array}{|c|l|l}\hline 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right) \left.\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & * \\ 0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right) \right\rvert\,$
4.) Indicate whether the statements are true or false
a.) A linear system, whose 3×5 coefficient matrix has three pivotal columns, must be consistent

True, every row has a pivot
b.) The echelon form of a coefficient matrix is unique

False, only row reduced echelon form is unique; there are infinitely many echelon forms of a singular matrix
5.) For any three distinct points in the plane, no two on a vertical line, there is a second degree polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$ that passes through $(1,12),(2,15)$, and $(3,17)$. That is, solve

$$
\begin{aligned}
& p(1)=12=a_{0}+a_{1}+a_{2} \\
& p(2)=15=a_{0}+2 a_{1}+4 a_{2} \\
& p(3)=16=a_{0}+3 a_{1}+9 a_{2}
\end{aligned}
$$

| $\left[\begin{array}{ccc\|c}1 & 1 & 1 & 12 \\ 1 & 2 & 4 & 15 \\ 1 & 3 & 9 & 16\end{array}\right]$ | R_{1}, R_{2}, R_{3} |
| :--- | :--- | :--- |
| $\left[\begin{array}{ccc\|c}1 & 1 & 1 & 12 \\ 0 & 1 & 3 & 3 \\ 0 & 2 & 8 & 4\end{array}\right]$ | $R_{2}-R_{1}$
 $R_{3}-R_{1}$
 $\left[\begin{array}{ccc\|c}1 & 0 & -2 & 9 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 2 & -2\end{array}\right]$$-\left(1 / 2 R_{3}\right)$
 $-R_{3}-R_{2}$
 $2 R_{3}+R_{1}$
 $\left[\begin{array}{ccc\|c}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -1\end{array}\right]$$R_{1}-R_{2}$
 $R_{3}-2 R_{2}$
 $\left[\begin{array}{ccc\|c}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -1\end{array}\right]$$A_{0}=7$
 $A_{1}=6$
 $A_{2}=-1$ |

Lecture 3

Friday, August 27, 2021 3:26 PM

General Information:

- Label pages in homework/exploration

Notes:

Basic and Free Variables

Consider the augmented matrix
$\left[\begin{array}{lll}\mathrm{A} & \mid & \vec{b}\end{array}\right]=\left[\begin{array}{lllll|l}1 & 3 & 0 & 7 & 0 & 4 \\ 0 & 0 & 1 & 4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 6\end{array}\right]$

The leading one's are in first, third, and fifth columns. So:

- The pivot variables of the system $A \vec{x}=\vec{b}$ are $\mathrm{x}_{1}, \mathrm{x}_{3}$, and x_{5}.
- The free variables are x_{2} and x_{4}. Any choice of the free variables leads to a solution of the system.

Note that A does not have basic or free variables. Systems have variables.

Existence and Uniqueness

A linear system is consistent if and only if (exactly when) the last column of the augmented matrix does not have a pivot. In other words, the RREF of the augmented matrix does not have the form:

$$
\left(\begin{array}{lllll|l}
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Moreover, if a linear system is consistent, then it has

1. a unique solution if and only if there are no free variables.
2. infinitely many solutions that are parameterized by free variables.

Section 1.3: Vector Equations

Think about the algebra in linear algebra.

- To do this, we need to introduce n-dimensional space \mathbb{R}^{n}, and vectors inside it.
\mathbb{R}^{1} is a number line.
\mathbb{R}^{2} is a plane.

Example:
$p=(3,2)$
$\vec{v}=\binom{3}{2}$

Vectors

- Also think about \mathbb{R}^{n} as vectors, with given length and direction

Vector Algebra

$\vec{u}=\binom{u_{1}}{u_{2}}, \quad \vec{v}=\binom{v_{1}}{v_{2}}$

1. Scalar Multiple:

$$
\overrightarrow{c u}=\binom{c u_{1}}{c u_{2}}
$$

2. Vector Multiple:

$$
\vec{u}+\vec{v}=\binom{u_{1}+v_{1}}{u_{2}+v_{2}}
$$

3. Pentagon Rule

Two vectors added together will be the length of the line that connects the beginning of the first vector and the end of the second vector.

Linear Combinations and Span

1. Given vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}} \in \mathbb{R}^{n}$, and scalars $c_{1}, c_{2}, \ldots c_{n}$ the vector below

$$
\vec{y}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{n} \overrightarrow{v_{n}}
$$

is called a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ with weights $c_{1}, c_{2}, \ldots c_{n}$.
2. The set of all linear combinations of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ is called the Span of $c_{1}, c_{2}, \ldots c_{n}$.

Geometric Interpretation of Linear Combinations

- Ex.

Is \vec{y} the span of vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{\mathrm{v}_{2}}$?
$\overrightarrow{v_{1}}=\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right), \quad \overrightarrow{v_{2}}=\left(\begin{array}{l}2 \\ 5 \\ 6\end{array}\right), \quad$ and $\vec{y}=\left(\begin{array}{c}7 \\ 4 \\ 15\end{array}\right)$.

Solution:

\vec{y} is in the span of vectors $\overrightarrow{\mathrm{v}_{1}}$ and $\overrightarrow{\mathrm{v}_{2}}$ if there exists two constants c_{1}, c_{2} such that
$\vec{y}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}$
$\left\{\begin{aligned} c_{1}+2 c_{2} & =7 \\ -2 c_{1}+5 c_{2} & =4 \\ -3 c_{1}+6 c_{2} & =15\end{aligned}\right.$
*Make sure to write " $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ " because the grader will know where you might have went wrong.
\(\left(\begin{array}{cc|c|c|c}1 \& 2 \& 7

-2 \& 5 \& 4

-3 \& 6 \& 15\end{array}\right)\)| $R_{2} \leftarrow R_{2}+2 R_{1}$ |
| :--- |
| $\underset{\sim}{R_{3} \leftarrow R_{3}+3 R_{1}}$ |\(\left(\begin{array}{cc|c}1 \& 2 \& 7

0 \& 9 \& 18

0 \& 12 \& 36\end{array}\right)\) Since $c=2$ for R_{2} and $c=3$ for R_{3}, the system is inconsistent.
$\therefore \vec{y}$ is not in the span of vectors $\overrightarrow{\mathrm{v}_{1}}$ and $\overrightarrow{\mathrm{v}_{2}}$ $\vec{y} \notin\left(\overrightarrow{\mathrm{v}_{1}}, \overrightarrow{\mathrm{v}_{2}}\right)$

The Span of two Vectors in \mathbb{R}^{n}
In general: Any two non-parallel vectors in \mathbb{R}^{3} span a plane that passesthrough the origin. Any vector in that plane is also in the span of the twovectors.

Vectors

- In general: Any two non-parallel vectors in \mathbb{R}^{3} span a plane that passesthrough the origin. Any vector in that plane is also in the span of the two vectors.

Lecture 4

Monday, August 30, 2021 4:25 PM

General Information:

- Quiz on Thursday (mainly on 1.1, 1.2, 1.3)
- 11am-7pm (15min)

Notes:

Section 1.4: The Matrix Equation

Notation

Symbol	Meaning
\in	Belongs to
\mathbb{R}^{n}	The set of vector with n real-valued elements
$\mathbb{R}^{m \times n}$	The set of real-valued matricies with m rows and n columns

Ex. $1\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \in \mathbb{R}^{3}$
Ex. $2 \quad\left(\begin{array}{llll}1 & 3 & 1 & 2 \\ 2 & 4 & 5 & 6\end{array}\right) \mathbb{R}^{2 \times 4}$
Ex. $3 \quad \mathbb{R}^{3 \times 1}=\mathbb{R}^{3}$

Linear Combinations

A is a $\mathrm{m} \times \mathrm{n}$ matrix with columns $\vec{a}_{1}, \ldots \vec{a}_{n}$ and $x \in \mathbb{R}^{n}$, then the matrix vector product $A \vec{x}$ is a linear equation of the columbs of A.

$$
\left[\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\vec{a}_{1} & \vec{a}_{n} & \cdots & \vec{a}_{n} \\
\mid & \mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{2}}+\cdots+x_{n} \overrightarrow{a_{n}}
$$

- Note that $A \vec{x}$ is in the span of the columns of A.

Ex.
$\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & -3 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right]=4\binom{1}{0} 3\binom{0}{-3} 7\binom{-1}{3}\binom{-3}{12}$

Solution Sets

If A is a $\mathrm{m} \times \mathrm{n}$, matrix with columns $\vec{a}_{1}, \ldots \vec{a}_{n}$ and $x \in \mathbb{R}^{n}$, then the solutions to

$$
\mathrm{A} \vec{x}=\vec{b}
$$

has the same set of solutions as the vector equation

$$
\mathrm{x}_{1} \overrightarrow{a_{1}}+\cdots+x_{n} \overrightarrow{a_{n}}=\vec{b}
$$

which has the same set of solutions as the set of linear equations with the augmented matrix
$\left[\begin{array}{lllll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \cdots & \overrightarrow{a_{n}} & \vec{b}\end{array}\right]$

Existence of Solutions

The equation $\mathrm{A} \vec{x}=\vec{b}$ has a solution if and only if \vec{b} is a linear combination of the colums of A.

$$
\mathrm{A} \vec{x}=\mathrm{x}_{1} \overrightarrow{a_{1}}+\cdots+x_{n} \overrightarrow{a_{n}}
$$

Ex.
For what vectors $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ does the equation have a solution?
\(\left(\begin{array}{ccc|c}1 \& 3 \& 4 \& b_{1}

2 \& 8 \& 4 \& b_{2}

0 \& -1 \& 2 \& b_{3}\end{array}\right) \quad\)| $\mathrm{R}_{2} \leftarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ |
| :---: |
| \sim |\(\left(\begin{array}{ccc|c}1 \& 3 \& 4 \& b_{1}

0 \& 2 \& -4 \& b_{2}-2 b_{1}

0 \& -1 \& 2 \& b_{3}\end{array}\right) \quad \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-\mathrm{R}_{2}\left($$
\begin{array}{ccc|c}1 & 3 & 4 & b_{1} \\
0 & 2 & -4 \\
0 & 0 & 0 & b_{2-} 2 b_{1} \\
2 b_{3}-b_{2}+2 b_{1}\end{array}
$$\right)\)

The system is consistent if and only if
$\left.\begin{array}{l|lll|}\hline 2 b_{3}-b_{2}+2 b_{1}=0 & \left(\left.\begin{array}{lll}2 & -1 & 2\end{array} \right\rvert\,\right. & 0\end{array}\right)$

The system is consistent iff $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{cc}1 / 2 b_{2}-b_{3} \\ b_{2} \\ b_{3}\end{array}\right)=b_{2}\left(\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right)+b_{3}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
The Raw Vector Rule for Computing $\mathrm{A} \vec{x}$
$\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{ll}\overrightarrow{\mathrm{R}_{1}} \cdot \vec{x} & \overrightarrow{\mathrm{R}_{2}} \cdot \vec{x}\end{array}\right]$

$$
\begin{aligned}
& =x_{1}\binom{1}{0} x_{2}\binom{0}{1} x_{3}\binom{2}{0} x_{4}\binom{0}{2} \\
& =\left(\begin{array}{llll}
x_{1} & & 2 x_{3} & \\
& x_{2} & & 2 x_{4}
\end{array}\right)
\end{aligned}
$$

Summary

We now have four equivalent ways of expressing linear systems
1.1 A system of equations:

$$
2 x_{1}+3 x_{2}=7
$$

$$
x_{1}-x_{2}=5
$$

1.2 An augmented matrix:
$\left[\begin{array}{cc|c}2 & 3 & 7 \\ 1 & -1 & 5\end{array}\right]$
1.3 A vector equation:
$x_{1}\binom{2}{1} x_{2}\binom{3}{-1} \neq\binom{ 7}{5}$
1.4 As a matrix equation:
$\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right) x_{x_{2}}^{x_{1}}=\binom{7}{5}$
Each representation gives us a different way to think about linear systems

Studio 3

Tuesday, August 31, 2021 12:30 PM

General Information:

TA Office Hours: 4-5pm today

- Link on canvas

Definition:
\vec{u} is a linear combination of
$\vec{a}_{1}, \ldots \vec{a}_{n}$ if
$\vec{u}=c_{1} \overrightarrow{n_{1}}+\cdots+c_{n} \overrightarrow{v_{n}}$
For some $c_{1}, \cdots, c_{n} \in \mathbb{R}$

Worksheet 1.3 and 1.4, Vector Equation and The Matrix Equation

1. Written Explanation Exercise
a. What does the span of a set of vectors represent?
i. All linear combinations of a set of vectors.
b. How do we determine whetehr a vector is in the span of a set of vectors?
i. Determine whether the augmented matrix of $\left[\begin{array}{lll|l}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \vec{b}\end{array}\right]$ is consistent.
2. Indicate whether the statements are true or false
a. If the equation $\mathrm{A} \vec{x}=\vec{b}$ is consistent, then \vec{b} is not in the set spanned by the columns of A.
i. True
b. If the augmented matrix $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ has a pivot position in every row, then the equation $\mathrm{A} \vec{x}=\vec{b}$ must be consistent.
i. True
c. There are exactly three vectors in $\operatorname{Span}\left\{\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}\end{array}\right\}$
i. False. There can only be 0 or ∞ vectors in a span
3. Span $\left\{\begin{array}{ll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}}\end{array}\right\}$ is equal to which of the expressions below?
a. $\operatorname{Span}\left\{\begin{array}{lll|l|}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & 3 \overrightarrow{v_{1}}\end{array}\right\}$
b. $\operatorname{Span}\left\{\begin{array}{ll|l|}\overrightarrow{v_{1}} & 3 \overrightarrow{v_{1}}\end{array}\right\} \quad$ Not Equal
c. $\operatorname{Span}\left\{\begin{array}{lll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & 3 \overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}\end{array}\right\}$ Equal
4. For what values of h is \vec{b} in the plane spanned by $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{1}}$?

ii. Now we know that $x_{2}=-2$. Hence, $h=4$
5. Sketch the span of the columns of the matrix $A=\left(\begin{array}{lll}2 & -1 & 3 \\ 4 & -2 & 6\end{array}\right)$

Lecture 5

Wednesday, September 1, 2021 3:24 PM

General Information:

- Quiz on Thursday

Notes:

Section 1.5: Solution Sets of Linear Systems

Homogenous Systems

Linear systems of the form $\mathrm{A} \vec{x}=\overrightarrow{0}$ are homogeneous
Linear systems of the form $A \vec{x} \neq \overrightarrow{0}$ are inhomogeneous
Because homogeneous systems always have the trivial solution, $\vec{x}=\overrightarrow{0}$, the interesting question is whether they have non-trivial solutions.
Observation

$$
\begin{aligned}
\text { A } \vec{x}= & \overrightarrow{0} \text { has a nontrivial solution } \\
& \Leftrightarrow \text { there is a free variable } \\
& \Leftrightarrow \text { A has a column with no pivot }
\end{aligned}
$$

Ex.

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=0 \\
2 x_{1}-x_{2}-5 x_{3}=0
\end{array}
$$

$$
x_{1}-2 x_{3}=0
$$

$\left(\begin{array}{ccc\|c}1 & 3 & 1 & 0 \\ 2 & -1 & -5 & 0 \\ 1 & 0 & -2 & 0\end{array}\right)$	$\mathrm{R}_{2} \leftarrow \underset{\sim}{R_{2}}-2 \mathrm{R}_{1}$	$\left(\begin{array}{ccc\|c}1 & 3 & 1 & 0 \\ 2 & -7 & -7 & 0 \\ 0 & -3 & -3 & 0\end{array}\right)$	\sim	$\left(\begin{array}{ccc\|c}1 & 3 & 1 & 0 \\ 2 & -7 & -7 & 0 \\ 0 & -3 & -3 & 0\end{array}\right)$	$\mathrm{R}_{1} \leftarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}$ \sim RREF \rightarrow	$\left(\begin{array}{ccc\|c}1 & 3 & 1 & 0 \\ 2 & -7 & -7 & 0 \\ 0 & -3 & -3 & 0\end{array}\right)$

Solution x_{3} : free, $\mathrm{x}_{1}=2 \mathrm{x}_{3}, \mathrm{x}_{2}=-\mathrm{x}_{3}$
$\therefore \vec{x}$ is a solution if and only if:
$\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}2 x_{3} \\ -x_{3} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right) \gg$ the solution set is a line

Parametric Forms, Homogeneous Case
In the example on the previous slide we expressed the solution to a system using a vector equation. This is a parametric form of the solution.

In general, suppose the free variables for $A \vec{x}=\overrightarrow{0}$ are $x_{k}, \ldots x_{n}$. Then all solutions to $A \vec{x}=\overrightarrow{0}$ can be written as

$$
\vec{x}=x_{k} \overrightarrow{v_{k}}+x_{k} \overrightarrow{v_{k+1}}+\cdots+x_{n} \overrightarrow{v_{n}}
$$

For some $\vec{v}_{1}, \ldots \vec{v}_{n}$. This is a parametric form of the solution.
Ex. $1 \vec{x} \in \mathbb{R}^{5}$
$\mathrm{x}_{1}, \mathrm{x}_{2}$: pivot variables
X_{3}, x_{4}, x_{5} : free variables
$\vec{x}=\left(\begin{array}{ccc}a x_{3} & b x_{4} & c x_{5} \\ d x_{3} & e x_{4} & f x_{5} \\ x_{3} & & \\ & x_{4} & \\ & & x_{5}\end{array}\right)=x_{3}\left(\begin{array}{l}a \\ d \\ 1 \\ 0 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{l}b \\ e \\ 0 \\ 1 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{l}c \\ f \\ 0 \\ 0 \\ 1\end{array}\right)$
Ex. 2 (non-homogeneous system)
$x_{1}+3 x_{2}+x_{3}=9$
$2 x_{1}-x_{2}-5 x_{3}=11$

$$
x_{1}-2 x_{3}=6
$$

$\left(\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -5 \\ 1 & 0 & -2\end{array}\right.$	$\left.\begin{array}{c}5 \\ 11 \\ 6\end{array}\right)$	$\begin{aligned} & R_{2} \leftarrow \underset{\sim}{\sim} R_{2}-2 R_{1} \\ & R_{3} \leftarrow R_{3}-R_{1} \end{aligned}$	$\left(\begin{array}{ccc}1 & 3 & 1 \\ 0 & -7 & -7 \\ 0 & -3 & -3\end{array}\right.$	($\left.\begin{array}{c}5 \\ -7 \\ -3\end{array}\right)$	\sim	$\left(\begin{array}{lll\|l}1 & 3 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$	$\mathrm{R}_{1} \leftarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}$ RREF \rightarrow	$\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right.$	$\left.\begin{array}{l}6 \\ 1 \\ 0\end{array}\right)$

Solutions:
$\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}6+2 x_{3} \\ 1-x_{3} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}6 \\ 1 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$

We found that:

$\vec{x}=\overrightarrow{x_{p}}+\overrightarrow{x_{0}} \gg$ solution of $\mathrm{A} \vec{x}=\overrightarrow{0}$
Take \vec{x} another solution $\mathrm{A} \vec{x}=\vec{b}$
$\vec{A}\left(-\overrightarrow{x_{p}}\right) A \vec{x}+A \overrightarrow{x_{p}}$
$=\vec{b}-\vec{b}$
$\Rightarrow \vec{x}\left(-\overrightarrow{x_{p}}\right)$) a solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$

Studio 4

Thursday, September 2, 2021 12:33 PM

General Information:
Def. The solution set of $A \vec{x}=\vec{b}$ is the set of all \vec{x} such that $A \vec{x}=\vec{b}$
If A is $m \times n$, then solution set $\left\{\vec{x} \in \mathbb{R}^{n} \mid \mathrm{A} \vec{x}=\vec{b}\right\}$
Def. A homogeneous system is a system of equation of form $A \vec{x}=\vec{D}$
$A=\left(\begin{array}{ccc}1 & 0 & 4 \\ 0 & 2 & -10\end{array}\right)$
What is the solution set of $A \vec{x}=\overrightarrow{0}$?
$A=\left(\begin{array}{ccc}1 & 0 & 4 \\ 0 & 1 & -5\end{array}\right)$
$X_{1}+4 x_{3}=0$
$x_{2}-5 x_{3}=0$
$\left\{\begin{array}{l}x_{1}=-4 x_{3} \\ x_{2}=5 x_{3} \\ x_{3}=x_{3}\end{array}\right.$
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-4 \\ 5 \\ 1\end{array}\right)$
\Rightarrow Solution set is $\left\{\left.x_{3}\left(\begin{array}{c}-4 \\ 5 \\ 1\end{array}\right) \right\rvert\, x_{3} \in \mathbb{R}\right\}$

Worksheet 1.5, Solution Sets of Linear Systems

1. Written Explanation Exercise
a. When a homogeneous system has a nontrivial solution, what properties does that system have? List at least two.
i. Column with no pivots (at least 1 free variable)
ii. Includes the zero vector
2. Indicate whether the statements are true or false
a. A non-trivial solution \vec{x} to $\mathrm{A} \vec{x}=\overrightarrow{0}$ has all non-zero entries.
i. False
b. If $\mathrm{A} \vec{x}=\vec{b}$ and $\mathrm{A} \vec{y}=\vec{b}$, then $\mathrm{A}(\vec{x}-\vec{y})=\overrightarrow{0}$
i. True
c. Any 3×2 matrix A with two pivotal positions has a non-trivial solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$
i. False
3. Example Construction
a. Give an example of a non-zero 2×3 matrix A such that $\vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ is a solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$
i. $\left(\begin{array}{lll}1 & -1 & 1 \\ 2 & -2 & 2\end{array}\right)$
b. Give an example of a non-trivial solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$, where $\mathrm{A}=\left(\begin{array}{cc}2 & 5 \\ 0 & 0 \\ 4 & 10\end{array}\right)$
i. $\binom{2.5}{-1}$
4. Express the solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$ in the parametric vector form, where $\mathrm{A}=\left(\begin{array}{llll}1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$

ii. $x_{1}+3 x_{2}-3 x_{4}=0$
iii. $x_{1}=3 x_{2}+3 x_{4}$
iv. $x_{3}+x_{4}=0$
v. $x_{3}-x_{4}=0$
vi. $\Rightarrow \vec{x}=\left(\begin{array}{c}-3 x_{2}+3 x_{4} \\ x_{2} \\ -x_{4} \\ x_{4}\end{array}\right)=\overrightarrow{x_{2}}\left(\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right)=\overrightarrow{x_{4}}\left(\begin{array}{c}3 \\ 0 \\ -1 \\ 1\end{array}\right)$

Lecture 6

Friday, September 3, 2021 4:59 PM

Notes:

Section 1.7: Linear Independence

Linear Independence
A set of vectors $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ in \mathbb{R}^{n} are linearly independent if

$$
\sum_{i=1}^{k} c_{i} \overrightarrow{v_{i}}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{k} \overrightarrow{v_{k}}=\overrightarrow{0} \Rightarrow\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \mid \overrightarrow{0}\right)
$$

has only the trivial solution. It is heavily dependent otherwise.

In other words, $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ are linearly dependent if there are real numbers $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}$ not all zero so that $c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{k} \overrightarrow{v_{k}}=\overrightarrow{0}$

Consider the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}$

To determine whether the vectors are linearly independent, we can se the linear combination the zero vector:

$$
c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{k} \overrightarrow{v_{k}}=\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{k}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right]=V \vec{c}=\overrightarrow{0}
$$

Linear independence: There is NO non-zero solution \vec{c}.
Linear dependence: There is a non-zero solution \vec{c}.

Ex. 1
For what values of h are the vectors linearly independent?

				$\left[\begin{array}{l}1 \\ 1 \\ h\end{array}\right],\left[\begin{array}{l}1 \\ h \\ 1\end{array}\right],\left[\begin{array}{l}h \\ 1 \\ 1\end{array}\right.$	
$\left(\begin{array}{lll\|l}1 & 1 & h & 0 \\ 1 & h & 1 & 0 \\ h & 1 & 1 & 0\end{array}\right)$	$\mathrm{R}_{2} \leftarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ \sim $\mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-\mathrm{hR}_{1}$	$\left(\begin{array}{ccc}1 & 1 & h \\ 0 & h-1 & 1-h \\ 0 & 1-h & 1-h^{2}\end{array}\right.$	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$\underset{\sim}{\mathrm{R}_{3} \leftarrow \mathrm{R}_{3}+\mathrm{R}_{2}}\left(\begin{array}{ccc\|c}1 & 1 & h & 0 \\ 0 & h-1 & 1-h & 0 \\ 0 & 0 & 2-h-h^{2} & 0\end{array}\right)$	

The 3 vectors are linearly independent iff $\left\{\begin{array}{c}h-1 \neq 0: h \neq 1 \\ h^{2}+h-2 \neq 0: h \neq 1,-2\end{array}\right.$

Hence, the 3 vectors are linearly independent iff $h \neq 1,-2$
Check:

$$
\begin{array}{ll}
h=1 & 2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
h=-2 & \left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)+\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

Suppose $\vec{v} \in \mathbb{R}^{n}$. When is the set $\{\vec{v}\}$ linearly dependent for some $c_{1} \neq 0$. $c_{1} \vec{v}=\overrightarrow{0} \Longrightarrow \vec{v}$ must be $\overrightarrow{0}$

Suppose $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \in \mathbb{R}^{n}$. When is the set $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ linearly dependent? Provide a geometric interpretation.

$$
c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}=\overrightarrow{0} \text { with }\left(c_{1}, c_{2}\right) \neq(0,0)
$$

1) If $c_{1}=0$ or $c_{2}=0$. Say $c_{1}=0$

$$
c_{2} \overrightarrow{v_{2}}=\overrightarrow{0} \text { with } c_{2} \neq 0
$$

2) If $c_{1} \neq 0, c_{2} \neq 0$

$$
\overrightarrow{v_{2}}=0
$$

$$
\overrightarrow{v_{2}}=-\frac{c_{1}}{c_{2}} \overrightarrow{v_{1}}: \quad \overrightarrow{v_{1}} \text { and } \overrightarrow{v_{2}} \text { are parallel. }
$$

Two Theorems

Fact 1 . Suppose $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ are vectors \mathbb{R}^{n}. If $\mathrm{k}>\mathrm{n}$ then $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ is linearly dependent.
Ex. $\left\{\binom{1}{0^{\prime}}\binom{0}{\pi^{\prime}}\left(\begin{array}{c}3 \\ 4\end{array}\right\}\right.$)are linearlyly dependent.

$$
(\overbrace{k \text { columns }}^{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}} \quad \mid 0)\} n \text { rows }
$$

Fact 2. If any one or more of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{2}}$ is $\overrightarrow{0}$, then $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ is linearly dependent.

$$
\text { Ex. }\left\{\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
1 \\
3 \\
42
\end{array}\right)\right\} \text { are linearly dependent. Indeed: } 58\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+0\left(\begin{array}{c}
2 \\
1 \\
3 \\
42
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

1.5 Parametric Vector form

$\mathrm{x}_{1}=$ pivot; $\mathrm{x}_{2}, \mathrm{x}_{3}$: free
$\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{cc}a x_{2} & b x_{3} \\ x_{2} & \\ & x_{3}\end{array}\right)=x_{2}\left(\begin{array}{l}a \\ 1 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{l}b \\ 0 \\ 1\end{array}\right)$

Studio 5

Tuesday, September 7, 2021 12:31 PM

Def. A set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ is linearly independent if

$$
\left(\begin{array}{c}
c_{1} \overrightarrow{v_{1}}+\cdots+c_{k} \overrightarrow{v_{k}}=\overrightarrow{0} \\
\Downarrow \\
c_{1}=c_{2}=\cdots=c_{k}=0
\end{array}\right)
$$

(i.e. $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ indepdent if $\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \mid \overrightarrow{0}\right.$)nly has trivial solution.)

Dependent Set:
$\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \quad\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$
$\Rightarrow-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+1\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]=\overrightarrow{0}$
$\{\overrightarrow{0}\}$
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$
$\Rightarrow-\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]=\overrightarrow{0}$
Independent Set:
$\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Worksheet 1.7, Linear Independence

1. Written Explanation Exercise
a. How are span and linear dependence related to each other?

$$
\text { If } \overrightarrow{v_{1}} \in \operatorname{Span}\left\{\overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}\right\} \text {, then }\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\} \text { is dependent }
$$

b. Suppose T is a linear map
i. If $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ are dependent, why are $T\left(v_{1}\right), \ldots, T\left(v_{k}\right)$ depdendent?

Exist $\mathrm{c}_{1}, \ldots, \mathrm{c}_{k}$ such that
$c_{1} \overrightarrow{v_{1}}+\cdots+c_{k} \overrightarrow{v_{k}}=\overrightarrow{0}$
Then $\overrightarrow{0}=\vec{D} 0$
$=\mathrm{T}\left(c_{1} \overrightarrow{v_{1}}+\cdots+c_{k} \overrightarrow{v_{k}}\right)$
$=c_{1} T\left(\overrightarrow{v_{1}}\right)+\cdots+c_{k} T\left(\overrightarrow{v_{k}}\right)$
(Think of $T(\vec{x})$ as $A \vec{x}$)
ii. If $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ are independent, need $T\left(v_{1}\right), \ldots, T\left(v_{k}\right)$ be independent?

Take $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], \quad v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\left\{A \overrightarrow{v_{1}}, A \overrightarrow{v_{2}}\right\}$ dependent
2. In the problems below, $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are three linearly independent vectors in \mathbb{R}^{3}. Which of the collections of vectors below are linearly independent?
a. $\left.\vec{k}_{1}, \overrightarrow{v_{2}}, \overrightarrow{0}\right)$

Dependent
b. $\left(\overrightarrow{v_{1}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}, \overrightarrow{v_{2}}\right)$

Dependent
c. $\left(\overrightarrow{v_{1}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)$

Independent
3. For what values of h are the colums of A linearly dependent?

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & 4 & -2 \\
-2 & -6 & 2 \\
4 & 7 & h
\end{array}\right] \\
& {\left.\left.\left[\left.\begin{array}{ccc}
2 & 4 & -2 \\
-2 & -6 & 2 \\
4 & 7 & h
\end{array} \right\rvert\, \begin{array}{c}
0 \\
0
\end{array}\right]\left|\begin{array}{l}
R_{1} \leftarrow \frac{1}{2} R_{1} \\
\sim \\
R_{2} \leftarrow \frac{1}{2} R_{2}
\end{array}\right|\left[\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
-1 & -3 & 1 & 0 \\
4 & 7 & h & 0
\end{array}\right] \right\rvert\, \begin{array}{l}
R_{2} \leftarrow R_{2}-R_{1} \\
R_{3} \leftarrow R_{3}-4 R_{1} \\
R_{3} \leftarrow R_{3}+R_{2}
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & h-4 & 0
\end{array}\right] }
\end{aligned}
$$

Hence, $h=4$.
4. A 5×3 matrix $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}\end{array}\right]$ has all non-zero columns, and $\overrightarrow{a_{3}}=5 \overrightarrow{a_{1}}+7 \overrightarrow{a_{2}}$. Identify a non-trivial solution to $\mathrm{A} \vec{x}=\overrightarrow{0}$.
$A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}\end{array}\right]$
$\overrightarrow{a_{3}}=5 \overrightarrow{a_{1}}+7 \overrightarrow{a_{2}}$
$\left[\overrightarrow{a_{1}}\right], \quad\left[\overrightarrow{a_{2}}\right], \quad\left[\overrightarrow{a_{3}}\right]$
$-5\left[\overrightarrow{a_{1}}\right]-7\left[\overrightarrow{a_{2}}\right]+1\left(5\left[\overrightarrow{a_{1}}\right]+7\left[\overrightarrow{a_{2}}\right]\right)$
$\vec{x}=\left[\begin{array}{c}-5 \\ -7 \\ 1\end{array}\right]$
5. Fill in the blanks.
a. The columns of a 7×3 matrix are linearly independent. How many pivots does the matrix have? 5 pivots
b. If the columns of a 3×7 matrix span \mathbb{R}^{3}, how many pivots does the matrix have? 3 pivots

Lecture 7

Wednesday, September 8, 2021 3:27 PM

Notes:

Section 1.8: Introduction to Linear Transformations

From Matrices to Functions
Let A be a $m \times n$ matrix. We define a function

$$
\begin{aligned}
& T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \hline T(\vec{v})=A \vec{v} \quad A \in \mathbb{R}^{m \times n} \\
& \hline
\end{aligned}
$$

This is called a matrix transformation.

- The domain of T is \mathbb{R}^{n}.
- The co-domain of T or target T is \mathbb{R}^{m}.
- The vector $T(\vec{x})$ is the image \vec{x} under T
- The set of all possible images $T(\vec{x})$ is the range.

This gives us another interpretation of $\mathrm{A} \vec{x}=\vec{b}$.

- Set of equations
- Augmented matrix
- Matrix equation
- Vector equation
- Linear transformation equation

Domain: \mathbb{R}^{n}
Target: \mathbb{R}^{m}
Co-Domain
"Bad example"
$F(x)=x^{2}$
Domain: \mathbb{R}
Target: \mathbb{R}
Range: $[0,+\infty)$

Functions from Calculus

Many of the functions we know have domain and codomain \mathbb{R}. We can express the rule that defines the functions in this way:
$f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=\sin (x)$
Domain: \mathbb{R}
Co-domain: \mathbb{R}
Range: $[-1,1]$
In calculus we often think of a function in terms of its graph, whosehorizontal axis is the domain, and the vertical axis is the codomain.

This is ok when the domain and codomain are \mathbb{R}. It's hard to do when the domain is \mathbb{R}^{2} and the codomain is \mathbb{R}^{3}. We would need five dimensions to draw that graph.

Ex. 1
Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right], \quad \vec{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}7 \\ 5 \\ 7\end{array}\right] \begin{gathered}\text { Domain: } \mathbb{R}^{2} \\ \text { Codomain: } \mathbb{R}^{3}\end{gathered}$
Compute $T(\vec{u})=A \vec{u}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{3}{4}\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$
Calculate $\vec{v} \in \mathbb{R}^{2}$ so that $T(\vec{v})=\vec{b}$
$T(\vec{v})=\left(\begin{array}{c}v_{1}+v_{2} \\ v_{2} \\ v_{1}+v_{2}\end{array}\right)=\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$
By substitution: $\vec{v}=\binom{2}{5}$
Give a $\vec{c} \in \mathbb{R}^{2}$ so there is no \vec{c} with $T(\vec{v})=\vec{c}$.
or: Give a \vec{c} that is not in the range of T.
or: Give a \vec{c} that is not in the span of the columns of A.
$\vec{c}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right), \quad \vec{c}=\left(\begin{array}{l}5 \\ 4 \\ 8\end{array}\right)$, or \cdots (any vector \vec{c} with $\left.c_{1} \neq c_{3}\right)$
Range (a.k.a. span of columns): plane in \mathbb{R}^{3} of equation $x_{1}-x_{3}$ or $x=z$ or $x_{1}=x_{3}$

Linear transformations

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if

- $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u}, \vec{v} in \mathbb{R}^{n}
- $T(c \vec{v})=c T(\vec{v})$ for all $\vec{v} \in \mathbb{R}^{n}$ and c in \mathbb{R}.

So if T is linear then
$T\left(c_{1} \overrightarrow{v_{1}}+\cdots+c_{k} \overrightarrow{v_{k}}\right)=c_{1} T\left(\overrightarrow{v_{1}}\right)+\cdots+c_{k} T\left(\overrightarrow{v_{k}}\right)$
This is called the principle of superposition. The idea is that if we know $T\left(c_{1}\right), \ldots, T\left(c_{k}\right)$ then we know every $T\left(\overrightarrow{v_{1}}\right)$ Fact: Every matrix transformation T_{A} is linear
Fact: $\overrightarrow{0}=T(0 \vec{v})=0 T(\vec{v})=\overrightarrow{0}$

$$
\overrightarrow{e_{1}}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \overrightarrow{e_{2}}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \ldots
$$

$$
\operatorname{In} \mathbb{R}^{2}=\overrightarrow{e_{1}}\binom{1}{0} \overrightarrow{e_{2}}\binom{0}{1}
$$

$$
T\binom{x}{y} T\left(x\binom{1}{0} y\binom{0}{1}\right)
$$

$$
=x T\binom{1}{0} y T\binom{0}{1}
$$

$$
\text { Indeed: }\left\{\begin{array}{c}
A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v} \\
A(c \vec{u})=c A \vec{u}
\end{array}\right.
$$

Ex. 2
Suppose T is the linear transformation $T(\vec{x})=A \vec{x}$. Give a short geometric interpreation of what $T(\vec{x})$ does to vectors in \mathbb{R}^{2}.
1.) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad T(\vec{x})=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array} x_{2}^{x_{1}} \Rightarrow\right)\binom{x_{2}}{x_{1}}$

\rightarrow Reflected through the line $x_{1}=x_{2}$
2.) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad T(\vec{x})=\binom{x_{1}}{0}$
x_{2}

$A \vec{x} \quad \bigsqcup$ projected onto the y-axis.
3.) $A=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$ for all $k \in \mathbb{R} \quad T(\vec{x})=k\binom{x_{1}}{x_{2}} k \vec{x}$
x_{2}

\rightarrow scaling by k.
Ex. 3
What does T_{A} do to the vector in \mathbb{R}^{3} ?

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad T(\vec{x})=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)
$$

\bigsqcup_{4} projecting by the $x_{1}-x_{2}$ plane .
$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad T(\vec{x})=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

\bigsqcup_{\square} projecting by the $x_{1}-x_{3}$ plane .
Ex. 4
A linear transformation $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ satisfies

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] \neq\left[\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \neq\left[\begin{array}{c}
-3 \\
8 \\
0
\end{array}\right]\right.\right. \\
& \text { What is the matrix that represents } T \text { ? }
\end{aligned}
$$

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{23} \\
a_{31} & a_{32}
\end{array}\right) \\
T\binom{1}{0} A\left(\begin{array}{l}
1 \\
0
\end{array} \Rightarrow\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right)=\left(\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right)\right. \\
T\binom{0}{1} A\binom{0}{1}\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right)=\left(\begin{array}{c}
-3 \\
8 \\
0
\end{array}\right) \\
\Rightarrow A=\left(\begin{array}{cc}
5 & -3 \\
-7 & 8 \\
2 & 0
\end{array}\right)
\end{gathered}
$$

Studio 6

Thursday, September 9, 2021

Def. A function $T: A \mapsto B$ is assignment rule that assings one value $T(a) \in B$ to each $a \in A$.
A : Domain
B : Codomain
\upharpoonright This is one-to-one
Ex. $f(x)=x^{2}, \quad f:[3,7] \rightarrow \mathbb{R}$
\rightarrow Not onto because (e.g. -1) is not hit.

Def. A function $T: A \longmapsto B$ is onto if for all $b \in B$, there is some element of $a \in A$ such that $T(a)=B$

Def. A function $T: A \mapsto B$ is 1-1 if it passes the horizontal line test.
$T\left(a_{1}\right)=T\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$

Worksheet 1.8, An Introduction to Linear Transforms

1. Suppose $T(x)=A x$ for all x where A is a matrix amd T is onto.
a. What can we say about pivotal rows of A ?
i. There is a pivot in every row
b. What can we say about the existence of solutions to $A x=b$?
i. $A x=b$ is consistent
2. Let A be an 3×4 matrix. What must c and d be if we define the linear transformation $T: \mathbb{R}^{c} \mapsto \mathbb{R}^{d}$ by $T(\vec{x})=A \vec{x}$?

$$
c=4
$$

$$
d=3
$$

3. Let $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a linear transformation such that

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=x_{1}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

Construct a matrix A so that $T(\vec{x})=A \vec{x}$ for all vectors \vec{x}.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 4 \\
3 & -1
\end{array}\right] \text { because }\left[\begin{array}{lll}
\overrightarrow{c_{1}} & \cdots & \overrightarrow{c_{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]} \\
& \quad=x_{1} \overrightarrow{c_{1}}+\cdots x_{n} \overrightarrow{c_{n}}
\end{aligned}
$$

4. Let $T: \mathbb{R}^{4} \mapsto \mathbb{R}^{3}$ be a linear transformation such that
$T\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0\end{array}\right]=T\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 4\end{array}\right] \neq \overrightarrow{0}$

Identify a non-trivial solution \vec{x} to $T \vec{x}=\overrightarrow{0}$

$$
x_{1}=\left[\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right], \quad x_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
4
\end{array}\right]
$$

Know: $A x_{1}=A x_{2}$
Know: $T(x)=A x$
So, $A x_{1}-A x_{2}=0$
So $T\left(\left[\begin{array}{c}4 \\ 0 \\ 0 \\ -4\end{array}\right]\right)=0$
5. Let T_{A} be the lienar transformation with the matrix below. Match each choice of A on the left with the geometric description of the action of T_{A} on the right.
$\left[\begin{array}{cc}.5 & 0 \\ 0 & .5\end{array}\right]=$ dilation by $1 / 2$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=$ projection onto $y-$ axis
$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=$ rotation by 90°
$\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]=$ sheer

Lecture 8

Friday, September 10, 2021 3:25 PM

General Information:

- Midterm 1: Kenaeda Building (8:00-8:50pm)
- MATLAB due tonight
- Professor is not an expert in MATLAB

Notes:

Section 1.9: Linear Transforms

Definition: The Standard Vectors

The standard vecotrs in \mathbb{R}^{n} are the vectors $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n}}$ where:

$$
\overrightarrow{e_{1}}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \overrightarrow{e_{2}}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \overrightarrow{e_{n}}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

For example in \mathbb{R}^{3} :
$\overrightarrow{e_{1}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \overrightarrow{e_{2}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad \overrightarrow{e_{3}}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=x_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+x_{2}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

$$
=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}
$$

$T(\vec{x})=x_{1} T\left(\overrightarrow{e_{1}}\right)+x_{2} T\left(\overrightarrow{e_{2}}\right)+x_{3} T\left(\overrightarrow{e_{3}}\right)$

A Property of the Standard Vectors

Note: If A is a $m \times n$ matrix with columns $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ then

$$
\mathrm{A} \overrightarrow{v_{i}}=\overrightarrow{v_{i}}, \text { for } i=1,2, \ldots, n
$$

So multiplying matrix by $\overrightarrow{e_{i}}$ gives column i of A.

Ex.
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right) \overrightarrow{e_{2}}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 5 \\ 8\end{array}\right)$
The Standard Matrix
Theorem:
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. There there is a unique matrix A such that:

$$
T(\vec{x})=A \vec{x}, \quad \vec{x} \in \mathbb{R}^{n}
$$

In fact, A is a $m \times n$ matrix, and its $\mathrm{j}^{\text {th }}$ column is the vector $\mathbb{T e}_{\mathrm{e}}^{\mathrm{j}}$,

$$
A=\left[\begin{array}{llll}
T\left(\overrightarrow{e_{1}}\right) & T\left(\overrightarrow{e_{2}}\right) & \cdots & T\left(\overrightarrow{e_{n}}\right)
\end{array}\right]
$$

The matrix A is the standard matrix for a linear transformation.

Rotations

Ex. 1 What is the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$T(\vec{x})=\vec{x}$ rotated counterclockwise by angle \emptyset ?

Standard Matrices in \mathbb{R}^{2}

- There is a long list of geometric transformations ofR2in ourtextbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, . . .)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

Two Dimensional Examples: Reflections
Reflection through x_{1} axis

Standard Matrix: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Reflection through x_{2} axis

Standard Matrix: $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$

Two Dimensional Examples: Reflection

Reflection through $\mathrm{x}_{2}-\mathrm{x}_{1}$ axis

Standard Matrix: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Reflection through $x_{2}-$-x $_{1}$ axis

Standard Matrix: $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$

Two Dimensional Examples: Contractions and Expansions
Horizontal Contraction

Standard Matrix: $\left(\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right)|k|<1$

Horizontal Expansion

Standard Matrix: $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right) k>1$

Two Dimensional Examples: Contractions and Expansions
Vertical Contraction

Standard Matrix: $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)|k|<1$
Vertical Expansion

Standard Matrix: $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right) k>1$
Two Dimensional Examples: Shears
Horizontal Shear(left)

Standard Matrix: $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right) k>0$
Horizontal Shear(right)

Standard Matrix: $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right) k<0$

Two Dimensional Examples: Shears
Vertical Shear(down)

Standard Matrix: $\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right) k>0$
Vertical Shear(up)

Standard Matrix: $\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right) k<0$

Two Dimensional Examples: Projections
Projection onto the x_{1} axis

Standard Matrix: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
Projection onto the x_{2} axis

Onto

Definition:
A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for all $\vec{b} \in \mathbb{R}^{m}$ there is a $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$.
Onto is an existence property: for any $\vec{b} \in \mathbb{R}^{m}, A \vec{x}=\vec{b}$ has a solution.
Examples:

- A rotation on the plane is an onto linear transformation.
- A projection in the plane is not onto.

Useful Fact:
T is onto if and only if its standard matrix has a pivot in every row.

Lecture 9

Monday, September 13, 2021 3:41 PM

Notes:

One-to-One

Definition:
A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if for all $b \in \mathbb{R}^{m}$ there is at most one (possibly no) $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$

One-to-one is a uniqueness property, it does not assert existence for all \vec{b}.

Ex.

- A rotation on the plane is a one-to-one linear transformation
- A projection in the plane is not one-to-one.

Useful Facts

- T is one-to-one if and only if the only solution to $T(\vec{x})=\overrightarrow{0}$ is the zero vector, $\vec{x}=\overrightarrow{0}$.
- T is one-to-one if and only if the standard matrix A of T has no free variables.

Ex.
Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn't possible to do so, state why.
a) A is a 2×3 standard matrix for a one-to-one linear transform.
$A=\left(\begin{array}{lll}1 & 0 & \\ 0 & & 1\end{array}\right)$ impossible: \#col > \# rows
b) B is a 3×2 standard matrix for an onto linear transform.
$B=\left(\begin{array}{l}1 \\ \end{array}\right)$ impossible: \#rows $>$ \#cols
c) C is a 3×3 standard matrix of a linear transform that is one-to-one and onto.
$C=\left(\begin{array}{lll}1 & 1 & 1 \\ & & \end{array}\right) \Rightarrow\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & \pi \\ 0 & 0 & 15\end{array}\right) \quad$ if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then "one-to-one" \Leftrightarrow "onto"

Theorem

For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.
a) T is onto.
b) The matrix A has columns which span \mathbb{R}^{m}
c) The matrix A has m pivotal columns.

Theorem

For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is one-to-one.
2. The unique solution to $T(\vec{x})=\overrightarrow{0}$ is the trivial one
3. The matrix A linearly independent columns.
$\mathrm{m} \geq \mathrm{n}$
4. Each column of A is pivotal.

Additional Examples

1. Construct a matrix $A \in \mathbb{R}^{2 \times 2}$, such that $T(\vec{x})=A \vec{x}$, where T is a linear transformation that rotates vectors in \mathbb{R}^{2} counterclockwise by $\frac{\pi}{2}$ radians about the origin, then reflects them through the line $\mathrm{x}_{1}=\mathrm{x}_{2}$.
2. Define a linear transformation by $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2} ; 5 x_{1}+7 x_{2} ; x_{1}+3 x_{2}\right)$
s T one-to-one? Is T onto?

$$
\begin{gathered}
\text { Ref } \quad \text { Ref } \\
\overrightarrow{e_{1}} \rightarrow \overrightarrow{e_{2}} \rightarrow \overrightarrow{e_{1}} \\
\overrightarrow{e_{2}} \rightarrow-\overrightarrow{e_{1}} \rightarrow-\overrightarrow{e_{2}} \\
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
W
\end{gathered}
$$

2. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
\rightarrow Not onto because columns $>$ rows

$$
\begin{gathered}
A=\left(\begin{array}{ll}
3 & 1 \\
5 & 7 \\
1 & 3
\end{array}\right) \quad T\left(\overrightarrow{e_{1}}\right)=T(1,0)=\left(\begin{array}{l}
3 \\
5 \\
1
\end{array}\right), T\left(\overrightarrow{e_{2}}\right)=T(0,1)=\left(\begin{array}{l}
1 \\
7 \\
3
\end{array}\right) \\
\qquad \text { Two linearly independent columns: one-to-one. }
\end{gathered}
$$

Section 2.1: Matrix Operations

Definition: Zero and Identity Matrices

1. A zero matrix is any matrix whose every entry is zero.

$$
0_{2 \times 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad 0_{2 \times 1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. The $n \times n$ identity matrix has ones on the main diagonal, otherwise all zeros.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: any matrix with dimensions $n \times n$ is square. Zero matrices need not be square, identity matrices must be square.

Sums and Scalar Multiples

Suppose $A \in \mathbb{R}^{m \times n}$, and $a_{i, j}$ is the element of A in row i and column j.

1. If A and B are $m \times n$ matrices, then the elements of $A+B$ are $a_{i, j}+b_{i, j}$.
2. If $c \in \mathbb{R}$, then the elements of $c A$ are $c a_{i, j}$.

For example, if
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+c\left[\begin{array}{lll}7 & 4 & 7 \\ 0 & 0 & k\end{array}\right]=\left[\begin{array}{ccc}15 & 10 & 17 \\ 4 & 5 & 16\end{array}\right]$

What are the values of c and k ?

$$
c=2 ; \quad k=5
$$

Properties of Sums and Scalar Multiples

Scalar multiples and matrix addition have the expected properties. If $r, s \in \mathbb{R}$ are scalars, and A, B, C are $m \times n$ matrices, then

1. $A+0_{m \times n}=A$
2. $(A+B)+C=A+(B+C)$
3. $r(A+B)=r A+r B$
4. $(r+s) A=r A+s A$
5. $r(s A)=(r s) A$

Matrix Multiplication

Definition
Let A be a $m \times n$ matrix, and B be a $n \times p$ matrix. The product is $A B$ a $m \times p$ matrix, equal to

$$
\mathrm{AB}=\mathrm{A}\left[\begin{array}{lll}
\overrightarrow{b_{1}} & \cdots & \overrightarrow{b_{p}}
\end{array}\right]=\left[\begin{array}{lll}
A \overrightarrow{b_{1}} & \cdots & A \overrightarrow{b_{p}}
\end{array}\right]
$$

Note: the dimensions of A and B determine whether $A B$ is defined, and what its dimensions will be.

$A \in \mathbb{R}^{m \times n} \Longrightarrow \vec{x} \in \mathbb{R}^{n} ; \quad b_{i} \in \mathbb{R}^{n}$

Row Column Rule for Matrix Multiplication

The Row Column Rule is a convenient way to calculate the product $A B$ that many students have encountered in prerequisite courses.

Row Column Method
If $A \in \mathbb{R}^{m \times n}$ has rows $\overrightarrow{a_{i}}$, and $B \in \mathbb{R}^{n \times p}$ has columns $\overrightarrow{b_{j}}$, each element of the product $C=A B$ is $c_{i, j}=\overrightarrow{a_{i}} \cdot \overrightarrow{b_{j}}$

Ex.
Compute the following using the row-column method.

$$
\begin{aligned}
& C=A B=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
1 & -1 & 4 & 5
\end{array}\right. \\
& \therefore C=\left(\begin{array}{ccc}
6 & 0 & 2 \\
-1 & -5 & -5
\end{array}\right)
\end{aligned}
$$

$B A$: not possible

$$
A B \neq B A \text { in general }
$$

Properties of Matrix Multiplication

Let A, B, C be matrices of the sizes needed for the matrix multiplication to be defined, and A is a $m \times n$ matrix.

1. (Associative) $(A B) C=A(B C)$
2. (Left Distributive) $A(B+C)=A B+A C$
3. (Right Distributive) $(A+B) C=A C+B C$
4. (Identity for matrix multiplication) $I_{m} A=A I_{n}$

Warnings:

1. (non-commutative) In general, $A B \neq B A$.
2. (non-cancellation) $A B=A C$ does not mean $B=C$.
3. (Zero divisors) $A B=0$ does not mean that either $A=0$ or $B=0$.

Ex.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1^{\prime}
\end{array}\right) \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right) \\
& A B=0, \quad A B=A C \\
& \text { but: } A \neq B, B \neq C, B \neq 0
\end{aligned}
$$

The Associative Property

The associative property is $(A B) C=A(B C)$. If $C=\vec{x}$, then
$(A B) \vec{x}=A(B \vec{x})$

Schematically:

The matrix product $A B \vec{x}$ can be obtained by either: multiplying by matrix $A B$, or by multiplying by B then by A. This means that matrix multiplication corresponds to composition of the linear transformations

Studio 7

Tuesday, September 14, 2021 12:34 PM

Worksheet 1.9, Linear Transforms

1. Indicate whether the statements are true or false.
a. If A is a 3×2 matrix then the map $x \rightarrow A x$ cannot be one-to-one.
i. False
b. If A is a 2×3 matrix then the map $x \rightarrow A x$ cannot be onto.
i. False
c. $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if and only if $A \vec{x}=\overrightarrow{0}$ only has the trivial solution.
i. True
2. Construct the standard matrix of the linear transformation T.
a. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$, where $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right] \neq\left[\begin{array}{l}3 \\ 1 \\ 4 \\ 1\end{array}\right]\right.$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right] \neq\left[\begin{array}{l}1 \\ 6 \\ 1 \\ 8\end{array}\right]\right.$
$\left[\begin{array}{ll}3 & 1 \\ 1 & 6 \\ 4 & 1 \\ 1 & 8\end{array}\right]$
b. T is a vertical shear given by $T\left(\overrightarrow{e_{2}}\right)=2 \overrightarrow{e_{2}}$ and $T\left(\overrightarrow{e_{1}}\right)=\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\overrightarrow{e_{1}} & -2 \overrightarrow{e_{2}} & 2 \overrightarrow{e_{2}}
\end{array}\right] } \\
&=\left[\begin{array}{cc}
1 & 0 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

c. A matrix $A \in \mathbb{R}^{2 \times 2}$ such that $T(\vec{x})=A \vec{x}$. T is a linear transformation that first reflects vectors across the line $x_{1}=x_{2}$ then rotates them counterclockwise by π radians about the origin, then reflects them across the line $x_{2}=0$.

Notes:
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad T(x)=A x$
The following are equivalent

- T is one-to-one.
- $A x=0$ has only the trivial solution
- No free variables in A
- Columns of A are independent.
- T is onto
- Pivot in every row of A
- $A x=b$ consistent for every $b \in \mathbb{R}^{m}$
- $\operatorname{Ran}(T)=\mathbb{R}^{m}$
- If T is 1-1 and onto, then $m=n$ and RREF of A is I.

Worksheet 2.1, Matrix Operations

1. Written Explanation Exercise

For square matrices A, B, is it always true that $(A+B)^{2}=A^{2}+2 A B+B^{2}$? Explain why/why not.
a. No, because $A B$ does not always equal $B A$
2. Consider:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) B=\left(\begin{array}{ll}
1 & h \\
k & 1
\end{array}\right)
$$

For what values (if any) of $k \in \mathbb{R}$ and $h \in \mathbb{R}$:
a. Do matrices A and B commute? False
b. Is the product $A B$ equal to I_{2} ? True
c. Is the product $A B$ equal to the 2×2 zero matrix $0_{2 \times 2}$? True
3. A is an $n \times n$ matrix that has elements $a_{i, j}$ where

$$
a_{i, j}=\left\{\begin{array}{l}
0, \text { when } i+j \text { is even } \\
1, \text { when } i+j \text { is odd }
\end{array}\right.
$$

For $n \geq 2$, how many pivot columns does A have? 2 pivots

Lecture 10

Wednesday, September 15, 2021 3:28 PM

Notes:

Proof of the Associative Law

Let A be $m \times n, B=\left[\begin{array}{lll}\vec{b}_{1} & \cdots & \vec{b}_{p}\end{array}\right]$ a $n \times p$ and $C=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{p}\end{array}\right] p \times 1$ matrix. Then,

$$
B C=\underbrace{c_{1} \vec{b}_{1}+\cdots+c_{p} \vec{b}_{p}}_{\text {lin combin of cols of } B}
$$

So,

$$
\begin{aligned}
A(B C) & =A\left(\vec{b}_{1}+\cdots+c_{p} \vec{b}_{p}\right) & & \\
& =c_{1} A \vec{b}_{1}+\cdots+A c_{p} \vec{b}_{p} & & \text { (multiply by } A \text { is linear) } \\
& =\left[\begin{array}{lll}
A \vec{b}_{1} & \cdots & A \vec{b}_{p}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right] & & \text { (lin combin of cols of } A B \text {) } \\
& =(A B) C & &
\end{aligned}
$$

Ex.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Give an example of a 2×2 matrix B that is non-commutative with A.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

$$
\text { Try, } B=\left[\begin{array}{ll}
1 & 6 \\
6 & 1
\end{array}\right]\left\{\begin{array}{l}
A B=\left[\begin{array}{ll}
7 & 7 \\
0 & 0
\end{array}\right] \\
B A=\left[\begin{array}{ll}
1 & 1 \\
6 & 6
\end{array}\right]
\end{array}\right.
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]: A B \neq B A
$$

The Transpose of a Matrix

A^{T} is the matrix whose columns are the rows of A.
Ex.

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 2 & 0
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 0 \\
4 & 2 \\
5 & 0
\end{array}\right]
$$

Properties of the Matrix Transpose

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(r A)^{T}=r\left(A^{T}\right)$
4. $(A B)^{T}=B^{T} A^{T}$

$$
\begin{aligned}
& \underbrace{A}_{m \times n} \times \underbrace{B}_{n \times p}=\underbrace{A B}_{m \times p} \Rightarrow(\underbrace{A B^{T}}_{m \times p}) \\
& \underbrace{B_{\sim}^{T}}_{p \times n} \times \underbrace{A^{T}}_{n \times m}{ }^{T}=(\underbrace{A B^{T}}_{p \times m})
\end{aligned}
$$

$A B: \quad(A B)_{i, j}=\overrightarrow{R o w}(A, i) \cdot \overrightarrow{C o l}(B, j)$

$$
\begin{aligned}
\left((A B)^{T} \neq(A B)_{j, i}=\right. & \overrightarrow{\operatorname{Row}}(A, j) \cdot \overrightarrow{\operatorname{Col}}(B, i) \\
& =\overrightarrow{\operatorname{Row}}\left(B^{T}, i\right) \cdot \overrightarrow{\operatorname{Col}}\left(A^{T}, j\right)
\end{aligned}
$$

Matrix Powers

$x^{2}=x \cdot x$

$$
A^{2}={\underset{n \times m}{A}}_{A}^{n \times m} \underset{n}{A} \Rightarrow n \text { must be } m \text { (square matrix) }
$$

For any $n \times n$ matrix and possible integer k, A^{k} is the product of k copies of A.

$$
A^{k}=A A \ldots A
$$

Ex. Compute C^{2}

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& C^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
&\left\llcorner C^{8}\left[\begin{array}{lcc}
1 & 0 & 0 \\
0 & 2^{8} & 0 \\
0 & 0 & 2^{8}
\end{array}\right]\right. \\
& A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array} \Rightarrow A^{2}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\right. \\
& A=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right) \Rightarrow A^{2}=\left(\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

```
\(\operatorname{rot}(\pi / 6)\)
\(\operatorname{rot}(\pi / 3)\)
```

Ex.
Define:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 8
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Which of these operations are defined, and what are the dimensions of the result?

1. $A+3 C$: Not Possible
2. $A(A B)^{T}: A \in \mathbb{R}^{2 \times 2}(A B)^{T} \in \mathbb{R}^{3 \times 2}$: Not possible
3. $A+A B C B^{T}: A+A B C B^{T} \in \mathbb{R}^{2 \times 2}$
4. $(A B)^{2}: N P$
$A B \in \mathbb{R}^{2 \times 3}$
$(A B)^{2}=A B A B$
$\neq A^{2} B^{2}$
Additional Examples
$(a-b)(a+b)=a^{2}-b^{2}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
True or False:
5. For any I_{n} and any $A \in \mathbb{R}^{n \times m},\left(I_{n}+A\right)\left(I_{n}-A\right)=I_{n}-A^{2}$

$$
\left(I_{n}+A\right)\left(I_{n}-A\right)=I_{n}^{2}+A I_{n}-I_{n} A-A^{2}
$$

$$
=I_{n}^{2}-A^{2}: \text { TRUE }
$$

2. For any A and B in $\mathbb{R}^{n \times n},(A+B)^{2}=A^{2}+2 A B+B^{2}$
$(A+B)^{2}=(A+B)(A+B)$

$$
=A^{2}+A B+B A+B^{2}
$$

$$
I_{n}=\left(\begin{array}{ccc}
1 & & (0) \\
& \ddots & \\
(0) & & 1
\end{array}\right)
$$

Unit 2

Saturday, November 13, 2021

Material Covered:
Chapter 2: Matrix Algebra

- Section 2.2 : Inverse of a Matrix
- Section 2.3 : Invertible Matrices
- Section 2.4 : Partitioned Matrices
- Section 2.5 : Matrix Factorizations
- Section 2.6 : The Leontif Input-Output Model
- Section 2.7 : Computer Graphics
- Section 2.8 : Subspaces of \mathbb{R}^{n}
- Section 2.9 : Dimension and Rank

Chapter 3: Determinants

- Section 3.1 : Introduction to Determinants
- Section 3.2 : Properties of the Determinant
- Section 3.3 : Volume, Linear Transformations

Chapter 4: Vector Spaces

- Section 4.9 : Applications to Markov Chains

Chapter 5: Eigenvalues and Eigenvectors

- Section 5.1 : Eigenvectors and Eigenvalues
- Section 5.2 : The Characteristic Equation

Lecture 11

Friday, September 17, 2021 3:17 PM

Notes:

Section 2.2: Inverse of a Matrix

The Matrix Inverses

Definition:
$A \in \mathbb{R}^{n \times n}$ is invertible (or non-singular) if there is a $C \in \mathbb{R}^{n \times n}$ so that

$$
A C=C A=I_{n}
$$

If there is, we write $C=A^{-1}$

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{n}
$$

Uniqueness:

If $A C=C A=I_{n}$
And $A D=D A=I_{n}$
$C A D=C D A=C \downharpoonleft \times c$
The inverse of a 2×2 Matrix
There's a formula for computing the inverse of a 2×2 matrix.
Theorem:
The 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is non-singular if and only if $a d-b c \neq 0$, and then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Ex.
State the inverse of the Matrix below
$A=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right]$
$2 \times(-7)-(-3) \times 5 \neq 0: A$ is invertible

$$
A^{-1}=\frac{1}{2 \times(-7)-(-3) \times 5}=\left(\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array} \neq\left(\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array}\right)\right.
$$

The Matrix Inverse

$$
=I_{n} A \vec{x}=\vec{b} \Rightarrow A^{-1} A \vec{x}=A^{-1} \vec{b}
$$

Theorem:
$A \in \mathbb{R}^{n \times m}$ has an inverse if and only if for all $\vec{b} \in \mathbb{R}^{n}, A \vec{x}=\vec{b}$ has a unique solution. And, in this case $\vec{x}=A^{-1} \vec{b}$
Ex.

```
Solve the linear system
            \(3 x_{1}+4 x_{2}=7\)
            \(5 x_{1}+6 x_{2}=7\)
\(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)=\binom{7}{7}\)
\(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)^{1}=\frac{1}{(3 \times 6)-(5 \times 4)}\left(\begin{array}{cc}6 & -4 \\ -5 & 3\end{array} \neq-\frac{1}{2}\left(\begin{array}{cc}6 & -4 \\ -5 & 3\end{array} \neq\left(\begin{array}{cc}-3 & 2 \\ 2.5 & -1.5\end{array}\right)\right.\right.\)
\(\therefore \vec{x}=A^{-1} \vec{b}=\left(\begin{array}{cc}-3 & 2 \\ 2.5 & -1.5\end{array} \gamma_{7}^{7} \neq\binom{-7}{7}\right.\)
```


Properties of the Matrix Inverse

A and B are omvertob;e $n \times n$ matricies.

1. $\left(A^{-1}\right)^{-1}=A$
2. $(A B)^{-1}=B^{-1} A^{-1}$ (Non-commutative)
3. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Ex.
True or False: $(A B C)^{-1}=C^{-1} B^{-1} A^{-1} \Rightarrow$ True
$\left\{\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I_{n}\right.$
$\left((A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I_{n}\right.$
3. $A A^{-1}=A^{-1} A=I_{n}$
$\left(A^{-1}\right)^{T} A^{T}=A^{T}\left(A^{-1}\right)^{T}=I_{n}$

An Algorithm for Computing $\boldsymbol{A}^{\mathbf{- 1}}$

If $A \in \mathbb{R}^{n \times n}$ and $n>2$, how do we calculate A^{-1} ?
Here's an algorithm we can use:

1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$
2. If reduction has form $\left(I_{n} \mid B\right)$ the A is invertible and $B=A^{-1}$. Otherwise, A is not invertible.

Ex.
Compute the inverse of $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 1\end{array}\right]$

$\left(A \mid I_{n}\right)$	$\left(\begin{array}{lll\|lll}0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$	\{solve "AC = $I_{n}{ }^{\prime} \rightarrow$ " $\left(A \mid I_{n}\right)$ "\}
$\mathrm{R}_{1} \leftarrow \mathrm{R}_{2}$	$\left(\begin{array}{lll\|lll}0 & 1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$	
$\begin{aligned} & R_{1} \leftarrow R_{1}-3 R_{3} \\ & R_{2} \leftarrow R_{2}-2 R_{3} \end{aligned}$	$\left(\begin{array}{ccc\|ccc}1 & 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$	
$\therefore A=$	$\left(\begin{array}{ccc}0 & 1 & -3 \\ 1 & 0 & -2 \\ 0 & 0 & 1\end{array}\right)$	

Why Does This Work?

We can think of our algorithm as simulatenously solving n linear systems:

$$
\begin{aligned}
& A \vec{x}=\overrightarrow{e_{1}} \\
& A \vec{x}=\overrightarrow{e_{2}}
\end{aligned}
$$

$$
A \vec{x}=\overrightarrow{e_{n}}
$$

Each column of A^{-1} is $A^{-1} \overrightarrow{e_{1}}=\vec{x}$
Over the next few slides we explore another explanation for how ouralgorithm works. This other explanation uses elementary matrices.

Elementary Matrices

An elementary matrix, E, is one that differs bylnby one row operation. Recall our elementary row operations:

1. swap rows
2. multiply a row by a non-zero scalar
3. add a multiple of one row to anotherWe can represent each operation by a matrix multiplication with an elementary matrix.

Ex.

- Swap $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}: E=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
- $\mathrm{R}_{2} \longleftarrow \pi \mathrm{R}_{2} \quad E=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$E: \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}+5 \mathrm{R}_{1} \quad E=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1\end{array}\right)$
$E=E\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1\end{array}\right)$
Ex.
Suppose

$$
E\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

By inspection, what is E ? How does it compare to I_{3} ?

$$
\begin{gathered}
E: \mathrm{R}_{2} \leftarrow \mathrm{R}_{2}+2 \mathrm{R}_{1} \\
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Theorem
Returning to understanding why our algorithm works, we apply a sequence of row operations to A to obtain I_{n} :
$\left(\begin{array}{lllll}E_{k} & \cdots & E_{3} & E_{2} & E_{1}\end{array}\right) \quad A=I_{n}$
Thus, $E_{k} \quad \cdots \quad E_{3} \quad E_{2} \quad E_{1}$ is the inverse matrix we seek.
Our algorithm for calculating the inverse of a matrix is the result of the following theorem.

Theorem
Matrix A is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row operations that transforms A into I, applied I, generates A^{-1}.
$\left(A \mid I_{n}\right)$
$\left(E_{1} A \mid E_{1} I_{n}\right)$
$\left(E_{2} E_{1} A \mid E_{2} E_{1} I_{n}\right)$
$\left(E_{k} \ldots E_{2} E_{1} A \mid E_{k} \ldots E_{2} E_{1} I_{n}\right)$

Using The Inverse to Solve a Linear System

- We could use A^{-1} to solve a linear system

$$
A \vec{x}=\vec{b}
$$

- We could calculate A^{-1} and then: $\vec{x}=A^{-1} \vec{b}$
- As our textbook points out, A^{-1} is seldom used: computing it can take a very long time, and is prone to numerical error.
- So why did we learn how to compute A^{-1} ? Later on in this course, we use elementary matrices and properties of A^{-1} to derive results.
- A recurring theme of this course: just because we can do something a certain way, doesn't that we should.

Lecture 12

Monday, September 20, 2021 9:49 PM

Notes:

Section 2.3 Invertible Matrices

The Invertible Matrix Theorem

Theorem

Let A be an $n \times n$ matrix. These statements are all equivalent.
a) A is invertible.
b) A is row equivalent to I_{n}.
c) A has n pivotal columns. (All columns are pivotal.)
d) $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
e) The columns of A are linearly independent.
f) The linear transformation $\vec{x} \mapsto A \vec{x}$ is one-to-one.
g) The equation $A \vec{x}=\vec{v}$ has a solution for all $\vec{b} \in \mathbb{R}^{n}$.
h) The columns of A span \mathbb{R}^{n}.
i) The linear transformation $\vec{x} \mapsto A \vec{x}$ is onto.
j) There is a $n \times n$ matrix C so that $C A=I_{n}$. (A has a left inverse.)
k) There is a $n \times n$ matrix D so tha $A D=I_{n}$. (A has a right inverse.)
l) A^{T} is invertible.

Proofs:
If $C A=I_{n}$
If $A \vec{x}=A \vec{y}: \quad c A \vec{x}=c A \vec{y}$
Thus, $\vec{x} \rightarrow A x$ is one-to-one

If $A D=I_{n}$
Take: $\vec{b} \in \mathbb{R}^{n}: \quad(A D) \vec{b}=I_{n} \vec{b}$
$A(\vec{b}) \vec{b}$
Thus, $\vec{x} \rightarrow A x$ is onto
$C A=I_{n} \Rightarrow A^{T} C^{T}=I_{n}$

Invertibility and Composition

The diagram below gives us another perspective on the role of A^{-1}.

The matrix inverse A^{-1} transforms $A x$ back to \vec{x}. This is because:

$$
A^{-1}(A \vec{x})=\left(A^{-1} A\right) \vec{x}=\vec{x}
$$

The Invertible Matrix Theorem: Final Notes

Items \mathfrak{j} and k of the invertible matrix theorem (IMT) lead us directly to the following theorem

Theorem
If A and B are $n \times n$ matricies and $A B=I_{n}$ then A and B are invertible and $B=A^{-1}$ and $A=B^{-1}$

- The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes: invertible, and non-invertible.
- As we progress through this course, we will be able to add additional equivalent statements to the IMT (that dea with determinants, eigenvalues, etc).

If $A B=I_{n}$
By IMT: A is invertible
$A^{-1}(A B)=A^{-1} I_{n}$

Ex. 1
Is this matrix invertible?
$A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{array}\right]$
\(\left.\left[$$
\begin{array}{ccc}1 & 0 & 2 \\
3 & 1 & -2 \\
-5 & -1 & 9\end{array}
$$\right]\left[$$
\begin{array}{l}R_{2} \leftarrow R_{2}-3 R_{1} \\
\sim \\
R_{3} \leftarrow R_{3}+R_{1}\end{array}
$$\right]\left[\begin{array}{ccc}1 \& 0 \& 2

0 \& 1 \& 4

0 \& -1 \& -1\end{array}\right] \right\rvert\,\)| $R_{3} \leftarrow R_{3}+R_{2}$ |
| :--- |
| \sim |\(\left[\begin{array}{lll}1 \& 0 \& 2

0 \& 1 \& 4

0 \& 0 \& 3\end{array}\right]\)

If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are singular. If it is not possible to do so, state why.

$\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & \boxed{1} & 1\end{array}\right)$
Not possible	Not possible	Possible
2 pivot columns	pivot in all columns	2 pivot columns

Matrix Completion Problems

- The previous example is an example of a matrix completion problem (MCP).
- MCPs are great questions for recitations, midterms, exams
- The Netflix Problem is another example of an MCP

Given a ratings matrix in which each entry (i, j) represents the rating of movie j by customer i if customer i has watched movie j, and is otherwise missing, predict the remaining matrix entries in order to make recommendations to customers on what to watch next

Section 2.4: Partitioned Matricies

What is a partitioned matrix?

Ex.
This matrix:
$\left[\begin{array}{lllll}3 & 1 & 4 & 1 & 0 \\ 1 & 6 & 1 & 0 & 1 \\ 0 & 0 & 0 & 4 & 2\end{array}\right]$

Can also be written as
$\left[\begin{array}{lll}{\left[\begin{array}{lll}3 & 1 & 4 \\ 1 & 6 & 1\end{array}\right]} & {\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]} \\ {[0} & 0 & 0\end{array}\right]\left[\begin{array}{ll}4 & 2\end{array}\right]$

We partitioned our matrix into four blocks, each of which has different dimensions.

Another Example of a Partitioned Matrix

Example: The reduced echelon form of a matrix. We can use a partitioned matrix to
$\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & * & \cdots & 0 \\ 0 & 1 & 0 & 0 & * & \cdots & 0 \\ 0 & 0 & 1 & 0 & * & \cdots & 0 \\ 0 & 0 & 0 & 1 & * & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0\end{array}\right]$

This is useful when studying the null space of A, as we will see later in this course.

Row Column Method

Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=3
$$

This is the row column matrix multiplication method from Section 2.1.

Theorem
Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i, j) entry of $A B$ is

$$
\operatorname{row}_{i} A=\operatorname{col}_{j} B
$$

This is the Row Column Method for matrix multiplication

Partitioned matrices can be multiplied using this method, as if each block were a scalar (provided each block has appropriate dimensions)

$$
\left(\begin{array}{ccc}
A & B \\
C & D & F \\
G & H
\end{array}\right)\left(\begin{array}{cc}
A E+B G & \cdots \cdots \\
\cdots \cdots & \cdots \cdots
\end{array}\right)
$$

Example of Row Column Method

Recall, using our formula for a 2×2 matrix, $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Ex.
Suppose $A \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{n \times n}$, and $C \in \mathbb{R}^{n \times n}$ are invertible matrices. Construct the inverse of $\left[\begin{array}{ll}A & B \\ 0 & C\end{array}\right]$.
$\left(\begin{array}{ccc}A & B \\ 0 & C\end{array}\right)_{Y}^{W} \quad Z \quad Z \quad\left(\begin{array}{cc}A W+B Y & A X+B C \\ C Y & C Z\end{array}\right)\left(\begin{array}{cc}I_{n} & 0 \\ 0 & I_{n}\end{array}\right)$
$\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z} \in \mathbb{R}^{n \times n}$
$C Y=0: \quad C^{-1} C Y=C^{-1} 0$
$C Z=I_{n}: Z=C^{-1}$
$A W+B Y=I_{n}: \quad W=A^{-1}$
$A X+B Z=0: \quad A X=-B C^{-1}$
$\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)^{1}=\left(\begin{array}{cc}A^{-1} & -A^{-1} B C^{-1} \\ 0 & C^{-1}\end{array}\right)$
2×2 matrix:
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a c}\left[\begin{array}{cc}c & -b \\ 0 & a\end{array}\right]$

Studio 8

Tuesday, September 21, 2021 12:30 PM

Worksheet 2.2 and 2.3, Invertible Matricies

1. Consider the sequence of row operations that reduce matrix A to the identity.

$$
A=\underbrace{\left(\begin{array}{lll}
0 & 4 & 0 \\
1 & 0 & 0 \\
0 & 8 & 1
\end{array}\right)}_{A} \sim \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 8 & 1
\end{array}\right)}_{E_{1} A} \sim \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{2} E_{1} A} \sim \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{3} E_{2} E_{1} A}=I_{n}
$$

Construct the elementary matrices E_{1}, E_{2}, E_{3}.

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \\
& E_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

2. Indicate whether the statements are true or false. A is an $n \times n$ matrix.
a. If $A \vec{x}=A \vec{y}$ for some $\vec{x} \neq \vec{y}$, then A cannot be intertible.
i. True
b. If for some $\vec{b} \in \mathbb{R}^{n}, A \vec{x}=\vec{b}$ has more than one solution then A is invertible.
i. False
c. Every elementary matrix is invertible.
i. True
3. Compute the inverse of the matrix, where $c \in \mathbb{R}$. For what values of c does the matrix have an inverse?

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
2 & 0 & 4 \\
0 & -1 & c
\end{array}\right]
$$

$c \neq-1$
$\therefore A^{-1}=E_{3} E_{2} E_{1} A=\left(\begin{array}{ccc}-\frac{2}{c+1} & \frac{1}{2} & -\frac{2}{c+1} \\ 1-\frac{1}{c+1} & 0 & -\frac{1}{c+1} \\ \frac{1}{c+1} & 0 & \frac{1}{c+1}\end{array}\right)$
4. Let A be an $n \times n$ matrix. Which statements guarantee that A is invertible?
a. Every vector in \mathbb{R}^{n} is in the span of the columns of A.
i. True
b. $A \vec{x}=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{n}$.
i. True
c. Matrix A can be row reduced to the identitity matrix.
i. True
d. The range of the linear transform $\vec{x} \rightarrow A \vec{x}$ is \mathbb{R}^{n}.
i. True
5. Two reasons that a matrix is not invertible are:
a. One column is a multiple of another column.
b. One column is the sum of other columns.

By inspection, identify which of the reasons above apply to these matrices.

Section 2.5: Matrix Factorization

Motivation

- Recall that we could solve $A \vec{x}=\vec{b}$ by using

$$
\vec{x}=A^{-1} \vec{b}
$$

- This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n.
- Instead we could solve $A \vec{x}=\vec{b}$ with Gaussian Elimination, but this is not efficient for large n.
- There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.

Matrix Factorizations

- A matrix factorization, or matrix decomposition is a factorization of a matrix into a product of matrices.
- Factorizations can be useful for solving $A \vec{x}=\vec{b}$, or understanding the properties of a matrix.
- We explore a few matrix factorizations throughout this course.
- In this section, we factor a matrix into lower and into upper triangular matrices.

Triangular Matrices

- A rectangular matrix A is upper triangular if $a_{i}, j=0$ for $i>j$

$$
\left(\begin{array}{lll}
1 & 5 & 0 \\
0 & 2 & 4^{\prime}
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)
$$

- A rectangular matrix A is lower triangular if $a_{i}, j=0$ for $i<j$

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 0
\end{array}\right)\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)
$$

Ask: Can you name a matrix that is both upper and lower triangular?

$$
\begin{aligned}
& I_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad 0_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { Diagonal matrix: } D=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

The $L U$ Factorization

Theorem
If A is an $m \times n$ matrix that can be row reduced to echelon form without row exchanges, then $A=L U$. L is a lower triangle $m \times n$ matrix with 1 's on the diagonal, U is an echelon form of A.
Ex.
If $A \in \mathbb{R}^{3 \times 2}$, the $L U$ factorization has the form:

$$
A=L U=\left(\begin{array}{lll}
1 & 0 & 0 \\
* & 1 & 0 \\
* & * & 1
\end{array}\right)\left(\begin{array}{ll}
* & * \\
0 & * \\
0 & 0
\end{array}\right)
$$

Fact: the $L U$ factorization is unique
If $A=L_{1} U_{1}=L_{2} U_{2}$
Then $L_{1}=L_{2}$ and $U_{1}=U_{2}$

Why We Can Compute the $\boldsymbol{L} \boldsymbol{U}$ Factorization

Suppose A can be row reduced to echelon form U without interchanging rows. Then,

$$
E_{p} \cdots E_{1}=U
$$

where the E_{j} are matricies that perform elementary row operations. They happen to be lower triangular and invertible, e.g.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
Therefore,

$$
\begin{gathered}
A=E_{1}^{-1} \cdots E_{p}^{-1} U=L U \\
\mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-2 \mathrm{R}_{2}: \quad E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \\
E^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

What about swap?
$\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}: \quad E=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right):$ Not lower Triangular

Using the $\mathbf{L U}$ Decomposition

Goal: given A and \vec{b}, solve $A \vec{x}=\vec{b}$ for \vec{x}.
Algorithm: construct $A=L U$, solve $A \vec{x}=L U \vec{x}=\vec{b}$ by:

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for \vec{x} in $U \vec{x}=\vec{y}$.

Solve the linear system whose $L U$ decomposition is given.
$A=L U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}2 \\ 3 \\ 2 \\ 0\end{array}\right)$

1. Forward: $L \vec{y}=\vec{b} \quad(\vec{y}=U \vec{x})$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
2 \\
0
\end{array}\right)
$$

First row: $y_{1}=z$
Second row: $y_{1}+y_{2}=3 \rightarrow y_{2}=1$
Third row: $2 y_{2}+y_{3}=2 \rightarrow y_{4}=0$
Last row: $y_{3}+y_{4}=0 \rightarrow y_{4}=0$

$$
L \vec{y}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right): \quad L \vec{y}=\vec{b}
$$

But we want $A \vec{x}=L(U \vec{x})=\vec{b}$

1. Backward: $U \vec{x}=\vec{y}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right) \\
& \text { Last row: } 0=0
\end{aligned}
$$

Third row: $2 x_{3}=60 \rightarrow x_{3}=0$
Second row: $2 x_{2}+x_{3}=1 \rightarrow x_{2}=1 / 2$
First row: $x_{1}=2$
Thus: $\vec{x}=\left(\begin{array}{c}2 \\ 1 / 2 \\ 0\end{array}\right)$: \quad solution of $A \vec{x}=\vec{b}$
Indeed: $A \vec{x}=L U \vec{x}=L \vec{y}=\vec{b}$

An Algorithm for Computing $\boldsymbol{L} \boldsymbol{U}$

To compute the $L U$ decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.

Note that

- In MATH 1554, the only row replacement operation we can use is to replace a row with a multiple of a row above it.
- More advanced linear algebra courses address this limitation.

Ex.
Compute the $L U$ factorization of A

$$
A=\left(\begin{array}{cccc}
4 & -3 & -1 & 5 \\
-16 & 12 & 2 & -17 \\
8 & -6 & -12 & 22
\end{array}\right)
$$

\(\left.\left.A $$
\begin{array}{c|c|c|c|cc}\mathrm{E}_{1}: \mathrm{R}_{2} \leftarrow \mathrm{R}_{2}+4 \mathrm{R}_{1} \\
\sim & \mathrm{E}_{2}: \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}\end{array}
$$ \right\rvert\, \begin{array}{cccc}4 \& -3 \& -1 \& 5

-16 \& 12 \& 2 \& -17

8 \& -6 \& -12 \& 22\end{array}\right) \quad\)| \sim |
| :---: |
| $\mathrm{E}_{3}: \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-5 \mathrm{R}_{2}$ |\(\left(\begin{array}{cccc}4 \& -3 \& -1 \& 5

0 \& 0 \& -2 \& 3

0 \& 0 \& 0 \& -3\end{array}\right)=U\)
$L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1\end{array}\right)$
$L=\left(\begin{array}{ccc}1 & 0 & 0 \\ \boxed{-4} & 1 & 0 \\ \boxed{2} & \boxed{5} & 1\end{array}\right)$

Summary

- To solve $A \vec{x}=L U \vec{x}=\vec{b}$

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for \vec{x} in $U \vec{x}=\vec{y}$.

- To compute the $L U$ decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible
2. Place entries in L such that the same sequence of row operations reduces L to I.

- The textbook offers a different explanation of how to construct the $L U$ decomposition that students may find helpful.
- Another explanation on how to calculate the $L U$ decomposition that students may find helpful is available from MIT Open Course Ware: www.youtube.com/watch?v=rhNKncraJMk

Studio 9

Thursday, September 23, 2021 12:36 PM

Worksheet 2.4 and 2.5, Partitioned Matrices and Matrix Factorizations

Worksheet Exercise

1. A and B are $n \times n$ invertible matricies, I_{n} is the $n \times n$ identity matrix, and 0 is the $n \times n$ matrix. Construct an expression for X in terms of A and B.

$$
\begin{aligned}
& \left(\begin{array}{ll}
A & B
\end{array}\right)\left(\begin{array}{lll}
0 & X & B \\
A & B & 0
\end{array}\left(\begin{array}{l}
X \\
I_{n} \\
B A
\end{array}\right)=B^{2}+B A X\right. \\
& \left(\begin{array}{ll}
A & B
\end{array}\right)\left(\begin{array}{lll}
0 & X & B \\
A & B & 0
\end{array}\right)\left(\begin{array}{l}
X \\
I_{n} \\
B A
\end{array}\right)=\left(\begin{array}{lll}
A B & A X+B^{2} & A B
\end{array}\right)\left(\begin{array}{c}
X \\
I_{n} \\
B A
\end{array}\right)=\left(B A X+I_{n}\left(A B+B^{2}\right)+A^{2} B^{2}\right) \\
& \therefore\left(B A X+I_{n}\left(A X+B^{2}\right)+A^{2} B^{2}\right)=B^{2}+B A X \Longrightarrow I_{n}\left(A X+B^{2}\right)+A^{2} B^{2}=B^{2} \Rightarrow A X+B^{2}+A^{2} B^{2}=B^{2} \\
& \therefore A X+A^{2} B^{2}=0 \Rightarrow X+A B^{2}=0 \Rightarrow X=-A B^{2}
\end{aligned}
$$

2. Compute the $L U$ factorization for

$$
A=\left[\begin{array}{cccc}
-1 & 5 & 3 & 1 \\
1 & -10 & -3 & 1 \\
0 & -5 & 0 & 2
\end{array}\right]
$$

$$
\left.A \quad \begin{gathered}
\mathrm{E}_{1}: \mathrm{R}_{2} \leftarrow \mathrm{R}_{2}+\mathrm{R}_{1} \\
\sim \\
\mathrm{E}_{2}: \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-\mathrm{R}_{2}
\end{gathered} \right\rvert\,\left[\begin{array}{cccc}
-1 & 5 & 3 & 1 \\
0 & -5 & 0 & 2 \\
0 & -5 & 0 & 2
\end{array}\right] \quad \mathrm{E}_{3}: \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-\mathrm{R}_{2}\left[\begin{array}{cccc}
-1 & 5 & 3 & 1 \\
0 & -5 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]=U
$$

$L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$
$L=\left(\begin{array}{ccc}1 & 0 & 0 \\ \hline-1 & 1 & 0 \\ \square 0 & 1 & 1\end{array}\right)$
3. Compute the $L U$ factorization of A and use it to solve for $A \vec{x}=\vec{b}$.

$$
\begin{aligned}
& A=\underbrace{\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
0 \\
4 \\
-4
\end{array}\right]}_{L} \begin{aligned}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right] } & \underbrace{\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right]}_{U}, \quad \vec{b}=\left[\begin{array}{c}
0 \\
4 \\
-4
\end{array}\right]
\end{aligned}, \ggg 十
\end{aligned}
$$

Solve: $L \vec{y}=\vec{b} \quad(\vec{y}=U \vec{x})$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
4 \\
-4
\end{array}\right]
$$

First row: $\mathrm{y}_{1}=0$
Second row: $-1 / 2 y_{1}+y_{2}=4 \rightarrow y_{2}=4$
Third row: $-2 / 3 y_{2}+y_{3}=-4 \rightarrow y_{3}=-4 / 3$

$$
L \vec{y}=\left[\begin{array}{c}
0 \\
4 \\
-4 / 3
\end{array}\right]: \quad L \vec{y}=\vec{b}
$$

Solve: $U \vec{x}=\vec{y}$

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
4 \\
4 / 3
\end{array}\right]
$$

Third row: $4 / 3 x_{3}=-4 / 3 \rightarrow x_{3}=-1$
Second row: ${ }^{3} / 2 x_{2}-x_{3}=4 \rightarrow x_{2}=2$
First row: $2 x_{1}-x_{2}=0 \rightarrow x_{1}=1$
Thus: $\vec{x}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]: \quad$ solution of $A \vec{x}=\vec{b}$
4. Written Explanation Exercise: What is the $L U$ decompostiion good for? Your reasoning should involve computational efficiency.
$L U$ decomposition is generally used for computational efficiency since the amount of steps it takes to find the inverse of A such that $A=$ $L U$ is significantly less when compared to standard and more roundabout way of computing the inverse.

Notes:

Section 2.6: The Leontif Input-Output Model
Example: An Economy with Two Sectors

This economy contains two sectors.

1. electricity (E)
2. water (W)

The "external demands" is another part of the economy, which does notproduce E and W.
How might we represent this economy with a set of linear equations?
The Leontif Model: Internal Consumption
Suppose economy has N sectors, with outputs measured by $\vec{x} \in \mathbb{R}^{N}$.

$$
\vec{x}=\text { output vector } x_{i}=\text { element } i \text { of vector }
$$

$\vec{x}=$ number of units produced by sector i
The consumption matrix, C, describes how units are consumed by sectors to produce output. Two equivalent ways of defining C :

- Sector j requires a proportion of the units created by sector i. Call that $c_{i, j} x_{i}$
- Sector i sends a proportion of its units to sector j. Call that $c_{i, j} x_{i}$

Elements of C are $c_{i, j}$, with $c_{i, j} \in[0,1]$ and

$$
C \vec{x}=\text { units consumed }
$$

$\vec{x}-C \vec{x}=$ units left after internal consumption

$c_{i, j}=$ pattern of sector i needed to produce 1 unit of j.

Ex.
An economy contains three sectors, $\mathrm{E}, \mathrm{W}, \mathrm{M}$. For every 100 units of output,

- E requires 20 units from $E, 10$ units from W, and 10 units from M
- W requires 0 units from $E, 20$ units from W, and 10 units from M
- M requires 0 units from $\mathrm{E}, 0$ units from W , and 20 units from M Construct the consumption matrix for this economy.

$C=\left(\begin{array}{ccc}E & W & M \\ 0.2 & 0 & 0 \\ 0.1 & 0.2 & 0 \\ 0.1 & 0.1 & 0.2\end{array}\right) \underset{M}{E}$
$C \vec{x}=\left(\begin{array}{ccc}0.2 x E & 0 & 0 \\ 0.1 x E & 0.2 x E & 0 \\ 0.1 x E & 0.1 x E & 0.2 x E\end{array}\right)$

Solution: Creating C

Our consumption matrix is
$C=\frac{1}{10}\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2\end{array}\right)$
Note:

- total output for each sector is the sum along the outgoing edges for each sector, which generates rows of C
- elements of C represent percentages with no units, they have values between 0 and 1
- our output vector has units

The Leontif Model: Demand

There is also an external demand given by $\vec{d} \in \mathbb{R}^{N}$. We ask if there is an \vec{x} such that

$$
\vec{x}-C \vec{x}=\vec{d}
$$

Solving for \vec{x} yields

$$
\vec{x}=(I-C) \vec{d}
$$

This is the Leontief Input-Output Model.

$$
\begin{aligned}
& (I-C) \vec{x}=\vec{d} \\
& \text { If }(I-C) \text { is invertible } \\
& \quad \text { Then } \vec{x}=(I-C)^{-1} \vec{d}
\end{aligned}
$$

Ex. 1 Revisited
Now suppose there is an external demand: what production level is required to satisfy a final demand of 80 units of $\mathrm{E}, 70$ units of W , and 160 unites of M ?

$\vec{d}=\left(\begin{array}{c}80 \\ 70 \\ 160\end{array}\right)$
$\therefore(I-C)=\frac{1}{10}\left(\begin{array}{ccc}8 & 0 & 0 \\ -1 & 8 & 0 \\ -1 & -1 & 8\end{array}\right)$
Solve $(I-C) \vec{x}=\vec{d}$
Solution:
The production level would be found by solving:

$$
\begin{aligned}
& \vec{x}-C \vec{x}=\vec{d} \\
& \vec{x}=(I-C) \vec{d}
\end{aligned}
$$

$\frac{1}{10}\left(\begin{array}{ccc}8 & 0 & 0 \\ -1 & 8 & 0 \\ -1 & -1 & 8\end{array}\right) \vec{x}=\left(\begin{array}{c}80 \\ 70 \\ 160\end{array}\right)$

$$
\begin{aligned}
8 x_{1} & =800 \Rightarrow x_{1}=100 \\
-x_{1}+8 x_{2} & =700 \Rightarrow x_{2}=100 \\
-x_{1} \quad-x_{2}+8 x_{3} & =1600 \Rightarrow x_{2}=225
\end{aligned}
$$

The output that balances demand with internal consumption is

$$
\vec{x}=\left(\begin{array}{l}
100 \\
100 \\
225
\end{array}\right)
$$

The Importance of $(I-C)^{-1}$
For the example above

$$
(I-C)^{-1} \approx\left(\begin{array}{ccc}
1.25 & 0 & 0 \\
0.15 & 1.25 & 0 \\
0.18 & 0.17 & 1.25
\end{array}\right)
$$

The entries of $(I-C)^{-1}=B$ have this meaning: if the final demand vector \vec{d} increases by one unit in the $j^{\text {th }}$ place, the column vector b_{j} is the additional output required from other sectors.

So to meet an increase in demand for M by one unit, requires 1.25 of one additional units from M to meet internal consumption.

First/Odd demand: $\overrightarrow{d_{0}}$
$\overrightarrow{x_{0}}=(I-C)^{-1} \overrightarrow{d_{0}}$
New demand: $\overrightarrow{d_{N}}=\overrightarrow{d_{0}}+K \overrightarrow{e_{1}}$

$$
\overrightarrow{x_{N}}=(I-C)^{-1} \overrightarrow{d_{\bar{w}}}=\underbrace{(I-C)^{-1} \overrightarrow{d_{0}}}_{x_{0}}+\underbrace{K(I-C)^{-1}}_{\text {columniof }(I-C)^{-1}} \overrightarrow{e_{1}}
$$

Lecture 15

Monday, September 27, 2021 6:56 PM

Section 2.7: Computer Graphics

Homogeneous Coordinates

Translations of points in Rn does not correspond directly to a linear transform. Homogeneous coordinates are used model translations using matrix multiplication.

Homogeneous Coordinates in \mathbb{R}^{n}
Each point (x, y) in \mathbb{R}^{2} can be identified with the point $(x, y, H), H \neq 0$, on the plane in \mathbb{R}^{3} that lies H units above the xy-plane.

Note: we often we set $H=1$.
Example: A translation of the form $(x, y) \rightarrow(x+h, y+k)$ can be represented as a matrix multiplication with homogeneous coordinates:
$\left(\begin{array}{lll}1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{c}x+h \\ y+k \\ 1\end{array}\right)$

Homogeneous matrix of a 2D linear transform

$$
\left(\begin{array}{cc|cc}
A & & 0 \\
- & & 0 \\
- & - & - \\
0 & 0 & \mid & 1
\end{array}\right) \text {, where } A \text { is a linear matrix in } 2 D
$$

A Composite Transform with Homogeneous Coordinates

Triangle S is determined by three data points, (1,1), (2,4), (3,1). Transform T rotates points by $\frac{\pi}{2}$ radians counterclockwise about the point $(0,1)$.
a) Represent the data with a matrix, D. Use homogeneous coordinates.
b) Use matrix multiplication to determine the image of S under T.
c) Sketch S and its image under T.
A. $D=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 1 \\ 1 & 1 & 1\end{array}\right)$
B. First: translation of $\vec{u}=\binom{0}{-\dot{1}} \quad A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$

Second: rotation: $R=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
Third: translation of $\vec{v}=\binom{0}{i} \quad B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
$\left\llcorner T=B R A=\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)\right.$
Image of S under T is $T D=\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -3 & 0 \\ 2 & 3 & 4 \\ 1 & 1 & 1\end{array}\right)$

3D Homogenous Coordinates

Homogeneous coordinates in 3D are analogous to our 2D coordinates.

Homogeneous Coordinates in \mathbb{R}^{3}.
(X, Y, Z, H) are homogeneous coordinates for (x, y, z) in $\mathbb{R}^{3}, H \neq 0$, and

$$
x=\frac{X}{H}, \quad y=\frac{Y}{H}, \quad z=\frac{Z}{H}
$$

3D Transformation Matrices

Construct matrices for the following transformations.
a) A rotation in \mathbb{R}^{3} about the y-axis by π radians.
b) A translation specified by the vector $\vec{p}=\left(\begin{array}{c}-2 \\ 3 \\ 4\end{array}\right)$

Studio 10

Worksheet 2.6, 2.7, 2.8: The Leontif Input-Output Model, Computer Graphics, Subspaces of $\mathbb{R}^{\boldsymbol{n}}$ Worksheet Exercises

1. An economy contains three sectors: X, Y, Z. For each unit of output,
a. X requires .2 units from $X, .1$ units from Y, and .1 units from Z.
b. Y requires 0 units from $X, .2$ units from Y, and .1 units from Z.
c. Z requires 0 units from $X, 0$ units from Y, and .2 units from Z.

Construct the consumption matrix for this economy. What production level is required to satisfy a final demand of 80 units of
$X, 60$ units of Y, and 160 units of Z ?

$$
\begin{aligned}
& C=\left(\begin{array}{ccc}
.2 & 0 & 0 \\
.1 & .2 & 0 \\
.1 & .1 & .2
\end{array}\right) \\
& \vec{x}=(I-C)^{-1} d=\left(\begin{array}{c}
100 \\
175 / 2 \\
3575 / 16
\end{array}\right)
\end{aligned}
$$

2. Rectangle S is determined by the data points, $(1,1),(3,1),(3,2),(1,2)$. Transform T reflects points through the line $y=2-x$ a. Represent the data with a matrix, D. Use homogeneous coordinates.

$$
D=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 1 & 1 \\
3 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

b. Use matrix multiplication to determine the image of S under T.

$$
\begin{aligned}
& T=T_{2} R_{f} T_{2}{ }^{-1} \\
& \therefore T=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
2 & 0 & 0
\end{array}\right] \\
& \therefore S \text { under } T=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & -1 & 1 \\
3 & -1 & 1 \\
1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

c. Sketch S and its image under T.

3. Transform $T_{A}=A \vec{x}$ rotatoes points in \mathbb{R}^{2} about the point (1,2). Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matricies.

$$
T_{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

4. Construct the matrix for the transformation that performs a rotation in \mathbb{R}^{3} about the x-axis by π radians.

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

5. A has the reduced echelon form below. Construct a basis for $\operatorname{Col} A$ and for Null A

$$
A=\left[\begin{array}{llllll}
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}} & \overrightarrow{a_{4}} & \overrightarrow{a_{5}} & \overrightarrow{a_{6}}
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 4 & 0 & 10 & 0 & 13 \\
0 & 0 & 1 & -3 & 0 & -5 \\
0 & 0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for CoIA $=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
Basis for NullA $=\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-10 \\ 0 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-13 \\ 0 \\ 5 \\ 0 \\ -4 \\ 1\end{array}\right]$

Lecture 16

Wednesday, September 29, 2021 5:13 PM

Section 2.8: Subspaces of $\mathbb{R}^{\boldsymbol{n}}$

Subsets of \mathbb{R}^{n}

Definition
A subset of $\mathbb{R}^{\boldsymbol{n}}$ is any collection of vectors that are in $\mathbb{R}^{\boldsymbol{n}}$.
$\ln \mathbb{R}^{2}:\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\binom{\pi}{e}\binom{\sqrt{3} / 2}{1 / 2}\right\}$
unit circle $\left\{\vec{x} \in \mathbb{R}^{2} \mid x_{1}+x_{2}=1\right\}$
$\ln \mathbb{R}^{3}$: unit sphere $\left\{\vec{x} \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=1\right\}$
Subspaces in \mathbb{R}^{n}
Definition
A subset H of \mathbb{R}^{n} is a subspace if it is close under scalar multiplies and vector addition. That is: for any $c \in \mathbb{R}$ and for
$\vec{u}, \vec{v} \in H$.

1. $c \vec{u} \in H$
2. $\vec{u}+\vec{v} \in H$

Note that condition 1 implies that the zero vector must be in H.
Ex.1: Which of the following subsets could be a subspace of \mathbb{R}^{2}

A) The unit square	B) a line passing through	C) a line that doesn't
nO origin	pass through the origin	
$(1 / 2 \quad 1 / 2) \in$	YES	NO
Unit Square	$\overrightarrow{0} \notin \mathbb{R}^{n}$	

$7(1 / 2 \quad 1 / 2) \notin$
Unit Square

Remark: $\{\overrightarrow{0}\}$ is the only bounded subspace of \mathbb{R}^{n}
The Column Space and the Null Space of a Matrix
Recall: for $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{p}} \in \mathbb{R}^{n}$, that $\operatorname{Span}\left\{\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{p}}\right\}$ is:
The set of all combinations of $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{p}}$
This is a subspace, spanned by $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{p}}$
Definition
Given an $m \times n$ matrix $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \cdots & \overrightarrow{a_{n}}\end{array}\right]$

1. The column space of $A, \operatorname{Col} A$, is the subspace of \mathbb{R}^{m} spaned by $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{n}}$.
2. The null space of A, Null A, is the subspace of \mathbb{R}^{n} spanned by the set of all vectors \vec{x} that solve $A \vec{x}=\overrightarrow{0}$.
$\vec{u}, \vec{v} \in \operatorname{Null} A, c \in \mathbb{R}$
$A(c \vec{u})=c A \vec{u}=\overrightarrow{0}: c \vec{u} \in \operatorname{Null} A$
$A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}: \vec{u}+\vec{v} \in \operatorname{Null} A$
$\Rightarrow \operatorname{Null} A$ is a subspace.

Ex.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & \dot{0}
\end{array}\right)^{\operatorname{Col}(A)} \operatorname{Null}(A)=\operatorname{Span}\binom{1}{0}
$$

Ex.
Is \vec{b} in the column space of A ?
$A=\left[\begin{array}{ccc}1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{array}\right] \sim\left[\begin{array}{ccc}1 & -3 & -4 \\ 0 & -6 & -18 \\ 0 & 0 & 0\end{array}\right], \quad \vec{b}=\left(\begin{array}{c}3 \\ 3 \\ -4\end{array}\right)$
$A\left(\vec{b} \neq\left(\begin{array}{ccc|c}1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4\end{array}\right)\left(\begin{array}{l}\mathrm{R}_{2} \leftarrow \mathrm{R}_{2}+4 \mathrm{R}_{1} \\ \sim \\ \mathrm{R}_{3} \leftarrow \mathrm{R}_{3}+3 \mathrm{R}_{1}\end{array}\left(\begin{array}{ccc|c}1 & -3 & -4 & 3 \\ 0 & 6 & -18 & 15 \\ 0 & 2 & 6 & 5\end{array}\right)\left(\begin{array}{l}\mathrm{R}_{3} \leftarrow \mathrm{R}_{3}-\frac{1}{3} \mathrm{R}_{1} \\ \sim\end{array}\left(\begin{array}{ccc|c}1 & -3 & -4 & 3 \\ 0 & 6 & -18 & 15 \\ 0 & 0 & 0 & 0\end{array}\right)\right.\right.\right.$

Remark: The third column of A is actually not needed here
Ex. 2
Using the matrix on the previous slide: is \vec{v} in the null space of A ?

$$
\begin{aligned}
\vec{c}= & \left(\begin{array}{c}
-5 \lambda \\
-3 \lambda \\
\lambda
\end{array}\right), \quad \lambda \in \mathbb{R} \\
A \vec{v}= & \left(\begin{array}{ccc}
1 & -3 & -4 \\
-4 & 6 & -2 \\
-3 & 7 & 6
\end{array}\right)\left(\begin{array}{c}
-5 \lambda \\
-3 \lambda \\
\lambda
\end{array}\right)=\lambda\left(\begin{array}{c}
-5+9-4 \\
18-18 \\
0
\end{array}\right)=\overrightarrow{0} \\
& h \vec{v} \in \operatorname{Null}(A)
\end{aligned}
$$

Remark:

\[

\]

Why $A(\overrightarrow{0} \vec{A}(\overrightarrow{0})$
$\rightarrow \mathrm{A} \vec{x}=\overrightarrow{0}$ and $\mathrm{E} \vec{x}=\overrightarrow{0}$ have the same solution set

Basis
Definition
A basis for a subspace H is a set of linearly independent vectors in H that span H.
Ex.
The set $H=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4} \right\rvert\, x_{1}+2 x_{2}+x_{3}+5 x_{4}=0\right\}$
a) H is a null space for what matrix λ ?
b) Construct a basis for H.
a) $x_{1}+2 x_{2}+x_{3}+5 x_{4}=0$
$\underbrace{\left(\begin{array}{llll}1 & 2 & 5\end{array}\right)}_{A}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=0$
$H=\operatorname{Null}(A)$
\rightarrow This is a subspace of A

Studio 11

Thursday, September 30, 2021 12:31 PM

What is a subspace?

1. A subset S such that
a. $\overrightarrow{0} \in S$
b. If $\vec{a}, \vec{b} \in S$, then $\vec{a}+\vec{b} \in S$
c. If $\vec{a} \in S$, then $c \vec{a} \in S$ for all $c \in S$
2. The span of some non-empty set of vectors
3. The column space of any matrix

Def: The dimension of a subspace S is the smallest \# of vectors that span S.
$\operatorname{Col}(\underbrace{\left[\begin{array}{lll}\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}}\end{array}\right]}_{A})=\operatorname{Span}\left(\overrightarrow{u_{1}}, \ldots \overrightarrow{u_{n}}\right)$
$\operatorname{Col}(A)=\left\{A x: \quad x \in \mathbb{R}^{n}\right\}$
$\operatorname{Null}(A)=\{x: \quad A x=0\}$
Worksheet 2.8, 2.9, Dimension and Rank
Worksheet Exercises

1. Construct a 3×3 matrix A with two pivotal columns, so that $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is the null space of A.
$\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right], \quad\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
a. All 2×4 matricies have a non-trivial null space. True
b. A 4×2 matrix with two pivot columns can have a non-trivial null space. False
c. If the columns of a 6×6 matrix A are a basis ffor \mathbb{R}^{6}, the null space of A is the zero vector. True
2. A is a $n \times n$ matrix that has elements $a_{i, j}$ where

$$
a_{i, j}=\left\{\begin{array}{l}
0, \text { when } i+j \text { is odd } \\
1, \text { when } i+j \text { is even }
\end{array}\right.
$$

Suppose $n \geq 2$.
a. What is the rank of A ?

$$
2
$$

b. Give a basis for the column space of A.

3. Which of the following, if any, are subspaces of \mathbb{R}^{3} ? For those that are subspaces, what is the dimension of the subspace?
a. $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}+x_{2}=4\right\}$
i. Not a subspace because $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in the set
b. $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0, x_{1}+2 x_{2}=0\right\}$
c. $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}<x_{2}<x_{3}\right\}$
i. Not a subspace because $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in the set
d. The null space of $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 0\end{array}\right)$
i. 1

Lecture 17

Friday, October 1, 2021 3:27 PM

Notes:
$\vec{x} G H=\vec{x}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{ccc}-2 x_{2} & -x_{3} & -5 x_{4} \\ x_{2} & & \\ & x_{3} & \\ & & x_{4}\end{array}\right)=x_{2}\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)+x_{4}^{\left(\begin{array}{c}-5 \\ 0 \\ 0 \\ 1\end{array}\right)}$
$\Longrightarrow\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ as a basis of H.
Ex.
Construct a basis for Null A and a basis for $\operatorname{Col} A$
$A=\left[\begin{array}{cccc}-3 & 6 & -1 & 0 \\ 1 & -2 & 2 & 0 \\ 2 & -4 & 5 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left\{\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right)\right\}$ is a basis for $\operatorname{Col} A$
$\vec{x} \in \operatorname{Null}(A)$ if
$\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{c}2 x_{2} \\ x_{2} \\ 0 \\ x_{4}\end{array}\right)=x_{2}\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$
$\left\{\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for Null A

Additional Example

Let $V=\left\{\left.\left(\begin{array}{l}a \\ b\end{array}\right\} \mathbb{R}^{2} \right\rvert\, a b=0\right\}$

1. Give an example of a vector in V. $\binom{1}{0}$
2. Give an example of a vector that is not in V. $\binom{0}{1}$
3. Is the zero vector in V ? YES
4. Is V a subspace? $\binom{1}{0}\binom{0}{1}\binom{1}{1}$.No

Section 2.9: Dimension and Rank

Choice of Basis

Key idea:
There are many possible choices of basis for a subspace. Our choice can give us dramatically different properties.
Example: sketch $\overrightarrow{b_{1}}+\overrightarrow{b_{2}}$ for the two different coordinate systems below.

Coordinates

Let $B=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{p}}\right\}$ be a basis for a subspace H. If \vec{x} is in H, then the coordinates of \vec{x} relative B are the weights (scalars) c_{1}, \ldots, c_{p} so that

$$
\vec{x}=c_{1} \overrightarrow{b_{1}}+\cdots+c_{p} \overrightarrow{b_{p}}
$$

And

$$
[\vec{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]
$$

Is the coordinate vector of \vec{x} relative to B, or the B-coordinate vector of \vec{x}
Ex. 1
Let $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}5 \\ 3 \\ 5\end{array}\right]$. Verify that \vec{x} is in the span of $B=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$, and
calculate $[\vec{x}]_{B}$.
\vec{x} is in the span of $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ if there exists c_{1}, c_{2} such that $c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}=\vec{x}$
$\left(\begin{array}{ll|l}1 & 1 & 5 \\ 0 & 1 & 3 \\ 1 & 1 & 5\end{array}\right) \sim\left(\begin{array}{ll|l}1 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$

Thus, $\vec{x}=2 \overrightarrow{v_{1}}+3 \overrightarrow{v_{2}}$

$$
[\vec{x}]_{B}=\binom{2}{3}
$$

Dimension

Definition
The dimension (or cardinality) of a non-zero subspace $H, \operatorname{dim} H$, is the number of vectors in a basis of H. We define $\operatorname{dim}\{0\}=0$

Theorem
Any two choices of basis B_{1} and B_{2} of a non-zero subspace H have the same dimension.

Examples:

1. $\operatorname{dim} \mathbb{R}^{n}=n$
2. $H=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}+\cdots+x_{n}=0\right\}$ has dimension $n-1$
3. $\operatorname{dim}($ Null $A)$ is the number of free variables
4. $\operatorname{dim}(\operatorname{Col} A)$ is the number of pivot variables
$(1 \ldots 1)\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=0, \quad \vec{x}=\left(\begin{array}{rrrr}-x_{2} & -x_{3} & \cdots & -x_{n} \\ x_{2} & & & \\ & x_{3} & \ddots & \\ & & & x_{n}\end{array}\right)$
Proof: Assume $\# B_{1}>\# x_{2}$

$$
\left(v_{1}, \ldots, v_{m}\right) \quad\left(v_{1}, \ldots, v_{n}\right) \quad: n>m
$$

$\overrightarrow{v_{1}}=a_{11} \overrightarrow{v_{1}}+\cdots+a_{m 1} \overrightarrow{v_{m}}$
\vdots
$\dot{\overrightarrow{v_{n}}}=a_{11} \overrightarrow{v_{1}}+\cdots+a_{m n} \overrightarrow{v_{n}}$

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} \\
\downarrow & & \downarrow
\end{array}\right)
$$

$\begin{array}{cc}\left.\stackrel{\downarrow}{v_{1}}\right]_{B_{1}} & {\left[\stackrel{\rightharpoonup}{v_{n}}\right]_{B_{n}}}\end{array}$
Columns are linearly dependent
$\rightarrow\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ are linearly dependent
\rightarrow Not a basis
Rank
Definition
The rank of matrix A is the dimension of its column space.
Ex. 2 Compute $\operatorname{rank}(A)$ and $\operatorname{dinN}(u l(A))$

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & 2 & 4 \\
0 & -9 & 6 & 5 & -6
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
3 \text { pivot columns } \\
\operatorname{Rank}(A)=3 \\
\operatorname{dinN}(u l l(A) \neq 2
\end{gathered}
$$

Rank, Basis, and Invertibility Theorems
Theorem (Rank Theorem)
If a matrix A has n columns, then Rank $A+\operatorname{dim}(N u l A)=n$
Theorem (Basis Theorem)
Any two basis for a subspace have the same dimension
Theorem (Invertibility Theorem)
Let A be a $n \times n$ matrix. These conditions are equivalent

1. A is invertible.
2. The columns of A are a basis for \mathbb{R}^{n}.
3. $\operatorname{Col} A=\operatorname{dim}(\operatorname{Col} A)=n$.
4. Null $A=\{\overrightarrow{0}\}$.

Examples

If possible give an example of a 2×3 matrix A, that is in RREF and has the given properties.
a) $\operatorname{Rank}(A)=3$

Not possible
b) $\operatorname{Rank}(A)=2$

$$
A=\left(\begin{array}{lll}
1 & 0 & * \\
0 & 1 & *
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

c) $\operatorname{dinan}(\operatorname{ull}(A) \neq 2$

$$
A=\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 0
\end{array}\right) r\left(\begin{array}{lll}
0 & 1 & * \\
0 & 0 & 0
\end{array}\right) r\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

d) Null $A=\{\overrightarrow{0}\}$

Not possible

Lecture 18

Monday, October 4, 2021 3:20 PM

Notes:

Section 3.1: Introduction to Determinants

A Definition of the Determinant

Suppose A is $n \times n$ and has elements $a_{i j}$.

1. If $n=1, A=\left[a_{1,1}\right]$, and has determinant $\operatorname{det} A=a_{1,1}$.
2. Inductive case: for $n>1$,

$$
\operatorname{det} A=a_{1,1} \operatorname{det} A_{1,1}-a_{1,2} \operatorname{det} A_{1,2}+\cdots+(-1)^{1+n} a_{1, n} \operatorname{det} A_{1, n}
$$

where $A_{i, j}$ is the submatrix obtained by eliminating row i and columns j of A.
Example

$$
A=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right) \Rightarrow A_{2,3}\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

Ex. 1
$\left(\begin{array}{cc}a & - \\ \mid & d\end{array}\right) \quad\left(\begin{array}{cc}\mid & b \\ c & -\end{array}\right)$
Compute $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a \operatorname{det}(1,1) b \operatorname{det}(1,3 \neq a d-b c
$$

Ex. 2
Notation $\operatorname{det}(A)=|A|$
Compute $\operatorname{det}\left[\begin{array}{ccc}1 & -5 & 0 \\ 2 & 4 & -1 \\ 0 & 2 & 0\end{array}\right]=\left|\begin{array}{ccc}1 & -5 & 0 \\ 2 & 4 & -1 \\ 0 & 2 & 0\end{array}\right|$
$\left|\begin{array}{ccc}1 & - & - \\ 1 & 4 & -1 \\ 1 & 2 & 0\end{array}\right| \quad\left|\begin{array}{ccc}- & -5 & - \\ 2 & 1 & -1 \\ 0 & 1 & 0\end{array}\right| \quad\left|\begin{array}{ccc}- & - & 0 \\ 2 & 4 & 1 \\ 0 & 2 & \mid\end{array}\right|$
$\therefore|A|=1 \times \operatorname{det}(1,1)(-5) \operatorname{det}(1,2) \quad 0 \operatorname{det}(1,3)$

$$
=\left|\begin{array}{cc}
4 & -1 \\
2 & 0
\end{array}\right|+5\left|\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right|+0=2
$$

Cofactor

Cofactors give us a more convenient notation for determinants.
Definition: Cofactor
The (i, j) cofactor of an $n \times n$ matrix A is

$$
C_{i, j}=(-1)^{i+j} \operatorname{det} A_{i, j}
$$

The pattern for the negative signs is

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & + & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right) \quad \begin{aligned}
& \\
&
\end{aligned}
$$

Theorem

The determinant of a matrix A can be computed down any row or column of the matrix. For instance, down the $j^{\text {th }}$ column, the determinant is $\operatorname{det}(A)=a_{1,1} C_{1,1}+a_{1,2} C_{1,2}+a_{1,3} C_{1,3}+\cdots$
This gives us a way to calculate determinants more efficiently
Ex. 3
Compute the determinant of $\underbrace{\left[\begin{array}{cccc}5 & 4 & 3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 3\end{array}\right]}_{A}$

$$
\begin{aligned}
|A|= & 5 C_{1,1}+0 C_{1,2}+0 C_{1,3}+0 C_{1,4} \\
& =5(-1)^{1+1}\left|\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 1 & 0 \\
1 & 1 & 3
\end{array}\right| \\
& =5 \times 3 \times C_{3,3}=15 \times(-1)^{3+3} \times \underbrace{\left\lvert\, \begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right.}_{1 \times 1-(-1) \times 2=3}=15 \times 1 \times 3=45
\end{aligned}
$$

Triangular Matrices
Theorem
If A is a triangular matrix then

$$
\operatorname{det} A=a_{1,1} a_{2,2} a_{3,3} \cdots a_{n, n}
$$

Ex. 4
Compute the determinant of the matrix. Empty elements are zero.

```
\(\left[\begin{array}{rr}2 & 1 \\ 2\end{array}\right.\)
21
21
21
\(\left.\begin{array}{ll}2 & 1 \\ & 2\end{array}\right]\)
```

$|A|=2^{7}=128$

Computational Efficiency

Note that computation of a co-factor expansion for an $N \times N$ matrix requires roughly N ! multiplications.

- A 10×10 matrix requires roughly 10 ! $=3.6$ million multiplications
- A 20×20 matrix requires $20!\approx 2.4 \times 10^{18}$ multiplications

Co-factor expansions may not be practical, but determinants are still useful.

- We will explore other methods for computing determinants that are more efficient.
- Determinants are very useful in multivariable calculus for solving certain integration problems.

Section 3.2: Properties of the Determinant

Row Operations

- We saw how determinants are difficult or impossible to compute with a cofactor expansion for large N.
- Row operations give us a more efficient way to compute determinants.

Theorem: Row Operations and the Determinant
Let A be a square matrix.

1. If a multiple of a row of A is added to another row produce B, then $\operatorname{det} B=\operatorname{det} A$.
2. If two rows are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
3. If one row of A is multiplied by a scalar k to produce B, then $\operatorname{det} B=-k \operatorname{det} A$.
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad|A|=a d-b c$
4. $\mathrm{R}_{2} \leftarrow \mathrm{R}_{2}+\mathrm{kR} \mathrm{R}_{1}$
$\left|\begin{array}{cc}a & b \\ c+k a & d+k b\end{array}\right|=a(d+k b)-b(c+k a)=|A|$
5. $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$
$\left|\begin{array}{ll}c & d \\ a & b\end{array}\right|=c b-a d=-|A|$
6. $\mathrm{R}_{1} \leftarrow \mathrm{k} \mathrm{R}_{1}$
$\left|\begin{array}{cc}k a & k b \\ c & d\end{array}\right|=k a d-k b c=k|A|$
Question: $A \in \mathbb{R}^{3 \times 3}$
$|A|=3$

$$
\begin{array}{ll}
|2 A|=8|A|=24 \\
\left|I_{3}\right|=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1 & \left|3 I_{3}\right|=\left|\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right|=27
\end{array}
$$

Studio 12

$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
$M_{2,3}=\left[\begin{array}{ll}1 & 2 \\ 7 & 8\end{array}\right]$

Determinants

- Let A be a $n \times n$ matrix
- Let $M_{i, j}$ " (i, j) minor" be a matrix obtained by deleting the $i^{\text {th }}$ row, and the $j^{\text {th }}$ column
- Let C_{i}, j " (i, j) cofactor" is $(-1)^{i+j} \operatorname{det}(i, j)$
- $\operatorname{det}(A)=a_{1,1} C_{1,1}+a_{1,2} C_{1,2}+\cdots+a_{1, n} C_{1, n}$

$$
=a_{2,1} C_{2,1}+a_{2,2} C_{2,2}+\cdots+a_{n, 2} C_{n, 2}
$$

$A=\left[\begin{array}{ll}\vec{u} & \vec{v}\end{array}\right]$

$\Rightarrow|\operatorname{det}(A)|=4$

Worksheet 3.1 to 3.3, Determinants

Worksheet Exercises

1. Discuss the computational efficiency of computing $\operatorname{det}(A)$ by cofactor expansion and by row operations. Which method is computationally better if A is a $n \times n$ and n is large? (Compare how many arithmetic operations it takes).

For row operations, it would take N^{3} steps to compute $\operatorname{det}(A)$. For cofactor expansion, you would need N ! Steps. Hence, when N is large, or even greater than ≈ 5.037, the row operations method would require less steps and would therefore be more computationaly efficient.
2. Use a determinant to identify all values of t and k such that the are the matricies are singular. Assume that t and k must be real numbers.
a. $A=\left(\begin{array}{ll}3 & 5 \\ 5 & 3\end{array}\right) t I_{2}$
i. $\operatorname{det} A=(3-t)^{2}-25=0 \Rightarrow t^{2}-6 t-16=0 \Rightarrow(t-8)(t+2)=0 \Rightarrow t=-8,2$
b. $B=\left(\begin{array}{ccc}0 & 1 & t \\ -3 & 10 & 0 \\ 0 & 5 & k\end{array}\right)$

$$
\text { i. } \quad \operatorname{det} B=3\left|\begin{array}{cc}
1 & t \\
5 & k
\end{array}\right|=0 \Rightarrow 3 k-15 t=0 \Rightarrow k=5 t
$$

3. Let $\left[\begin{array}{llll}\vec{a} & \vec{b} & \vec{c} & \vec{d}\end{array}\right]$ be a 4×4 matrix whose determinant is equal to 2 . Compute the value of the determinant $\left[\begin{array}{llll}\vec{d} & \vec{b} & 3 \vec{c} & \vec{a}\end{array}\right]$.
$\left[\begin{array}{llll}\vec{a} & \vec{b} & \vec{c} & \vec{d}\end{array}\right] \Rightarrow \operatorname{det}=2$
$\left[\begin{array}{cccc}\vec{d} & \vec{b} & 3 \vec{c} & \vec{a}\end{array}\right] \Rightarrow \operatorname{det}=2(-1)(3)=-6$
4. R is the parallelogram determined by $\overrightarrow{p_{1}}=\binom{3}{4}$ nd $\overrightarrow{p_{2}}=\binom{2}{2}$)f $A=\left(\begin{array}{ll}1 & -1 \\ 1 & 1^{\prime}\end{array}\right)$ what is the area of the image of R under the map $\vec{x} \mapsto A \vec{x}$?
a. $\quad|\operatorname{det} R|=\left|\left|\begin{array}{ll}3 & 2 \\ 4 & 2\end{array}\right|\right|=|6-8|=2$
b. $\operatorname{det} A=\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|=1+1=2$
c. Therefore the area of the image of R under the map $\vec{x} \mapsto A \vec{x}$ is $2 \times 2=4$
5. $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transformation that first rotates vectors in \mathbb{R}^{2} counterclockwise by θ radians about the origin, then reflects them through the line $x_{1}=x_{2}$. By inspection, what is the value of the determinant of A ? You should compute its value to check your answer.
a. $\operatorname{det} A=\operatorname{det} F \times \operatorname{det} R=(-1)(1)=-1$

Lecture 19

Wednesday, October 6, 2021 2:41 PM

Notes:

Ex. 1
Compute $\left|\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right|$
$|A|=\begin{aligned} & R_{2} \leftarrow R_{2}+2 R_{1}\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2\end{array}\right| R_{2} \leftrightarrow R_{1}\left|\begin{array}{ccc}0 & 0 & -5 \\ 1 & -4 & -2 \\ 0 & 3 & 2\end{array}\right|=(-1) \times 1 \times 3 \times(-5)=15\end{aligned}$

Invertibility

Important practical implication: If A is reduced to echelon form, by r interchanges of rows and columns, then
$|A|=\left\{\begin{array}{cl}(-1)^{r} \times(\text { product of pivots }), & \text { when } A \text { is invertible } \\ 0, & \text { when } A \text { is singular }\end{array}\right.$

$$
\begin{array}{cc}
E_{1} E_{2} & E_{k} \\
A \rightarrow \rightarrow \cdots & \rightarrow
\end{array} U=\left(\begin{array}{ccc}
x & \cdots & x \\
& \ddots & \vdots \\
& & x
\end{array}\right)
$$

Ex. 2 Compute the determinant

$$
\begin{aligned}
& =2 \times 1 \times(-3) \times 5=-30
\end{aligned}
$$

Properties of the Determinant

For any square matrices A and B, we can show the following.

1. $\operatorname{det} A=\operatorname{det} A^{T}$.
2. A is invertible if and only if $\operatorname{det} A \neq 0$.
3. $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.
4. and 3. combined: if A is invertbile, then
$\left|A^{-1}\right|=\left|\frac{1}{A}\right|$
$|A|\left|A^{-1}\right|=\left|I_{n}\right|=1$

Proof of (1):

$$
\begin{gathered}
E_{1} E_{2} \quad E_{k} \\
A \rightarrow \rightarrow \cdots \rightarrow
\end{gathered} \quad U=\left(\begin{array}{ccc}
x & \cdots & x \\
& \ddots & \vdots \\
& & x
\end{array}\right)
$$

"form": $\mathrm{R}_{3} \leftarrow \mathrm{R}_{3}+2 \mathrm{R}_{1}$

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right), \quad E^{T}=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

"form": $\mathrm{R}_{3} \leftrightarrow \mathrm{R}_{1}$
$E=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)=E^{T}$

Finally $U=E_{k} \ldots E_{2} E_{1} A$
Using 3. $|U|=\left|E_{k}\right| \ldots\left|E_{2}\right|\left|E_{1}\right||A|$
$U^{T}=E_{k}{ }^{T} \ldots E_{2}{ }^{T} E_{1}{ }^{T} A^{T}$
$\left|U^{T}\right|=\left|E_{k}{ }^{T}\right| \ldots\left|E_{2}{ }^{T}\right|\left|E_{1}^{T}\right|\left|A^{T}\right|$

$$
\Rightarrow|A|=\left|A^{T}\right| \quad * \text { we can do elementary row operations }
$$

Additional Example

Use a determinant to find all values of λ such that matrix C is not invertible.

$$
\begin{gathered}
C=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)-\lambda I_{n} \\
C-\lambda I_{n}=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{ccc}
5-\lambda & 0 & 0 \\
0 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right) \\
C-\lambda I_{n} \text { is not invertible if }\left|C-\lambda I_{n}\right|=0 \\
\left|\begin{array}{ccc}
5-\lambda & 0 & 0 \\
0 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right|=(5-\lambda)\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=(5-\lambda)\left(\lambda^{2}-1\right)=(5-\lambda)(1-\lambda)(\lambda+1) ;
\end{gathered}
$$

Hence, $C-\lambda I_{n}$ is not invertible if $\lambda= \pm 1 \vee 5$

Additional Example

Determine the value of

$$
\operatorname{det} A=\operatorname{det}(\overbrace{\left(\begin{array}{lll}
0 & 2 & 0 \\
1 & 1 & 2 \\
1 & 1 & 3
\end{array}\right)})^{8})
$$

By the property of 3: $|A B|=|B||A|$

$$
\rightarrow\left|B^{8}\right|=|B|^{8}
$$

$|B|=\left|\begin{array}{lll}0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3\end{array}\right|=-2\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=-2$
$\therefore|A|=|B|^{8}=(-2)^{8}=256$

Section 3.3: Volume, Linear Transformation

Determinants, Area and Volume

In \mathbb{R}^{2}, determinants give us the area of a parallelogram.

Area of parallelogram $=\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) a d-b c$
Area $=$ Area $($ Large Rectangle $)-2 \mathfrak{2}($ rea $(1)+$ Area $(2)+$ Area 3$) \neq(a+c)(b+d)-2\left(\frac{1}{2} c d+\frac{1}{2} a b+b c\right)$

$$
=a d+a b+c d+b c-c d-a b-2 b c=a d-b c
$$

$$
=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Studio 13

Thursday, October 7, 2021 12:31 PM

Practice Worksheet

1. Find the determinant of $\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 3 \\ 0 & 1 & 0\end{array}\right]$ via row reducation
$\operatorname{det}\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 3 \\ 0 & 1 & 0\end{array}\right] \sim-\operatorname{det}\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]=-(3)=-3$
2. Let $A \in \mathbb{R}^{n \times n}$ be the matrix whose (i, j) entry is $\min \{i, j\}$. Find $\operatorname{det} A$
a. Testing for when $n=1,2,3,4$
b. $\operatorname{det}[1]=1$
c. $\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=1$
d. $\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=1$
e. $\operatorname{det}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]=1$
f. $\therefore \operatorname{det} A=1$
3. Find the area of the triangle $\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 4\end{array}\right]$
a. $\left|\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 4\end{array}\right|$
b. Substracting by $\left|\begin{array}{l}2 \\ 3\end{array}\right|$ so that the origin is at $(0,0)$
c. $\left|\begin{array}{l}0 \\ 0\end{array}\right|\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|$
d. Hence, Area $=\frac{1}{2} \operatorname{det}\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|=\frac{1}{2}(2)=1$
4. Suppose $A \in \mathbb{R}^{2 \times 2}$, the entries in A are integers, and $\operatorname{det} A=1$. Then the entries of A^{-1} are also integers.
a. True
5. $A \in \mathbb{R}^{n \times n}$ is one-to-one if and only if $\operatorname{det} A=0$.
a. False
6. A matrix $A \in \mathbb{R}^{2 \times 2}$ maps regions of area 1 to regions of area 2 if and only if $\operatorname{det} A=2$
a. False
7. Suppose $A \in \mathbb{R}^{n \times n}$ has a 0 diagonal. Then $\operatorname{det} A=0$
a. False
8. Suppose $A \in \mathbb{R}^{n \times n}$ and $\operatorname{Col}(A)$ is spanned by $n-1$ vectors. Then $\operatorname{det} A=0$
a. True
9. Complete the sentence "The more cheese, the more holes. The more holes, the less cheese. Therefore,
a. Cheese \propto \# holes

Notes:

Determinants as Area or Volume

Theorem
The volume of the parallel piped spanned by the columns of an $n \times n$ matrix A is $|\operatorname{det} A|$.
Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors $\vec{a}, c \vec{a}+\vec{b}$, for any scalar c.

Ex. 1
Calculate the area of the parallelogram determined by the points $(-2,2),(0,3),(4,-1),(6,4)$

$(0,0)$

Area $=\left|\begin{array}{ll}\vec{u} & \vec{v}\end{array}\right|=\left|\begin{array}{ll}2 & 6 \\ 5 & 1\end{array}\right||=|-28|=28$

Linear Transformations

Theorem
If $T_{A}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, and S is some parallelogram in \mathbb{R}^{n}, then volumeft $(S) \neq|\operatorname{det}(A)| \cdot \operatorname{volume}(S)$
$B \in \mathbb{R}^{n \times n} \rightarrow S$: parallelogram spanned by the columns of B
Volume $(\overbrace{T_{A}(S)}^{A B}) \neq|\operatorname{det} A| \cdot \operatorname{Volume}(S)=|\operatorname{det} A| \cdot|\operatorname{det} B|$
$|\operatorname{det} A B|=|\operatorname{det} A| \cdot|\operatorname{det} B|$

Section 4.9: Applications to Markov Chains

Ex. 1

- A small town has two libraries, A and B.
- After 1 month, among the books checked out of A.
- 80% returned to A
- 20% returned to B
- After 1 month, among the books checked out of B.
- 30\% returned to A
- 70% returned to B

If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After n month? A place to simulate this is http://setosa.io/markov/index.htm

Ex. 1 Continued

The books are equally divided by between the two branches, denoted by $\overrightarrow{x_{0}}=\left[\begin{array}{c}.5 \\ 5\end{array}\right]$. What is the distribution after 1 month, call it $\overrightarrow{x_{1}}$? After two month?

$$
\begin{aligned}
& \overrightarrow{x_{1}}=\left(\begin{array}{ll}
0.8 x_{0} A & 0.3 x_{0} B \\
0.2 x_{1} A & 0.7 x_{1} B
\end{array}\right)=\left(\begin{array}{ll}
0.8 & 0.3 \\
0.2 & 0.7
\end{array} \overrightarrow{y y}_{0}=\binom{0.55}{0.45}\right. \\
& \overrightarrow{x_{2}}=\left(\begin{array}{ll}
0.8 x_{0} A & 0.3 x_{0} B \\
0.2 x_{1} A & 0.7 x_{1} B
\end{array}\right) P \overrightarrow{x_{1}}=P\left(P \overrightarrow{x_{0}}\right)=P^{2} \overrightarrow{x_{0}}
\end{aligned}
$$

After k months, the distribution is $\overrightarrow{x_{k}}$, which is what in terms of $\overrightarrow{x_{0}}$?
After k months:

$$
\overrightarrow{x_{k}}=P^{k} \overrightarrow{x_{0}}
$$

Markov Chains

A few definitions:

- A probability vector is a vector, \vec{x}, with non-negative elements that sum to 1

O Ex: $\binom{0}{1}\binom{1 / 2}{1 / 2},\left(\begin{array}{c}1 / 3 \\ 1 / 3 \\ 1 / 2\end{array}\right),\left(\begin{array}{c}1 / 2 \\ 0 \\ 1 / 4 \\ 1 / 4\end{array}\right), \ldots$

- A stochastic matrix is a square matrix, P, whose columns are probabiltiy vectors.
- A Markov chain is a sequence of probability vectors, $\overrightarrow{x_{k}}$, and a stochastic matrix P, such that:

$$
\overrightarrow{x_{k+1}}=P \overrightarrow{x_{k}}, \quad k=0,1,2, \ldots
$$

- A steady-state vector for P is a probability vector \vec{q} such that $P \vec{q}=\vec{q}$

Ex. 2

Determine a steady-state vector for the stochastic matrix
$\left(\begin{array}{ll}.8 & .3 \\ .2 & .7\end{array}\right)$
Steady-state vector: $P \vec{q}=\vec{q}$

$$
P \vec{q}-\vec{q}=0
$$

$$
(P-I) \vec{q}=\overrightarrow{0}
$$

$$
\left(\begin{array}{cc|c}
-0.2 & 0.3 & 0 \\
0.2 & -0.3 & 0
\end{array}\right) \sim\left(\begin{array}{cc|c}
-2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right): 1 \text { free variable; line of solution }
$$

Example: $\vec{x}=\binom{3}{2}$ steady-state vector: $\frac{1}{5}\binom{3}{2}\binom{0.6}{0.4}$
After a long time: 60% of books in A

$$
40 \% \text { of books in } B
$$

Convergence

We often want to know what happens to a process,

$$
\overrightarrow{x_{k+1}}=P \overrightarrow{x_{k}}, \quad k=0,1,2, \ldots
$$

as $k \rightarrow \infty$

Definition: a stochastic matrix P is regular if there is some k such that P^{k} only contains strictly positive entries.

Theorem

If P is a regular stochastic matrix, then P has a unique steady-state vector \vec{q}, and $\overrightarrow{x_{k+1}}=P \overrightarrow{x_{k}}$ converges to \vec{q} as $k \rightarrow \infty$.
Ex: $P=\left(\begin{array}{ll}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right)$ regular
$P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \rightarrow P^{k}$, for any $k \rightarrow$ not regular
$P=\left(\begin{array}{ll}1 & 1 / 3 \\ 0 & 2 / 3\end{array}\right) \quad P^{2}=\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$. not regular
$P=\left(\begin{array}{lll}1 / 3 & 0 & 1 / 4 \\ 1 / 3 & 1 & 1 / 2 \\ 1 / 3 & 0 & 1 / 4\end{array}\right)=P^{k}=\left(\begin{array}{ccc}* & 0 & * \\ * & 1 & * \\ * & 0 & *\end{array}\right) \rightarrow$ not regular
$P=\left(\begin{array}{ccc}1 / 2 & 1 / 3 & 1 / 5 \\ 1 / 2 & 1 / 3 & 2 / 5 \\ 0 & 1 / 3 & 2 / 5\end{array}\right) \rightarrow$ regular claim: P^{2} has no zero entry

Lecture 21

Wednesday, October 13, 2021

Notes:

Stochastic Vectors in the Plane

The stochastic vectors in the plane are the line segment below, and a stochastic matrix maps stochastic vectors to themselves. Iterates $P^{k} \overrightarrow{x_{0}}$ converge to the steady state.

Do the same thing with $\overrightarrow{x_{0}}=\overrightarrow{e_{2}}: 2^{\text {nd }}$ column of P^{k}
Ex. 3
A car rental company has 3 rental locations, A, B, and C. Cars can be returned at any location. The table below gives the pattern of rental and returns for a given week.
Rented from

Returned to	A	B	C
A	.8	.1	.2
B	.2	.6	.3
C	.0	.3	.5

There are 10 cars at each location today.
a) Construct a stochastic matrix, P, for this problem.
b) What happens to the distribution of cars after a long time? You may assume that P is regular.

$P=\left[\begin{array}{lll}.8 & .1 & .2 \\ .2 & .6 & .3 \\ .0 & .3 & .5\end{array}\right]$
Is P regular? YES p^{2} has no 0 entries
$P \vec{q}=\vec{q}: \quad(P-I) \vec{q}=0$
$\left(\begin{array}{ccc|c}-0.2 & 0.1 & 0.2 & 0 \\ 0.2 & -0.4 & 0.3 & 0 \\ 0 & 0.3 & -0.5 & 0\end{array}\right) \stackrel{R_{2}}{\sim} \leftarrow R_{2}+R_{1}\left(\begin{array}{ccc|c}-2 & 1 & 2 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 3 & -5 & 0\end{array}\right) \stackrel{R_{3} \leftarrow R_{3}+R_{2}}{\sim}\left(\begin{array}{ccc|c}-2 & 1 & 2 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \underset{\sim}{R_{1} \leftarrow 3 R_{1}+R_{2}}$
$\left(\begin{array}{ccc|c}-6 & 0 & 11 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\left\{\begin{array}{l}x_{1}=\frac{11}{6} x_{2} \\ x_{2}=\frac{5}{3} x_{3}\end{array}\right.$

Take $x_{3}=6: \quad \vec{x}=\left(\begin{array}{c}11 \\ 10 \\ 6\end{array}\right)$
Then: $\vec{q}=\frac{1}{27}\left(\begin{array}{c}11 \\ 10 \\ 6\end{array}\right)$
Solution to $P \vec{x}=\vec{x}: \quad \vec{x}=c\left(\begin{array}{c}11 \\ 10 \\ 6\end{array}\right), \quad c \in \mathbb{R}$
The stochastic vectors in \mathbb{R}^{3}, are vectors $\left[\begin{array}{c}s \\ t \\ 1-s-t\end{array}\right]$, where $0 \leq s, t \leq 1$ and $s+t \leq 1$. P 'contracts' stochastic vectors to x_{∞}.
$(1,0,0)$

(0,0,1)

Section 5.1: Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

If $A \in \mathbb{R}^{n \times n}$, and there is a $\vec{v} \neq 0$ in \mathbb{R}^{n}, and

$$
A \vec{v}=\lambda \vec{v}
$$

Then \vec{v} is an eigenvector for A, and $\lambda \in \mathbb{C}$ is the corresponding eigenvalue.
Note that

- We will only consider square matrices.
- If $\lambda \in \mathbb{R}$, then
- when $\lambda>0, A \vec{v}$ and \vec{v} point in the same direction
- when $\lambda<0, A \vec{v}$ and \vec{v} point in opposite directions
- Even when all entries of A and \vec{v} are real, λ can be complex (a rotation of the plane has no real eigenvalues.)
- We explore complex eigenvalues in Section 5.5.

Ex. 1
Which of the following are eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ What are the corresponding eigenvalues?
a) $\overrightarrow{v_{1}}=\binom{1}{1} A \overrightarrow{v_{1}}=\binom{2}{2} 2 \overrightarrow{v_{1}}$
a. $\overrightarrow{v_{1}}$ is an eigenvector the eigenvalue 2 .
b) $\overrightarrow{v_{2}}=\binom{1}{-1} A \overrightarrow{v_{2}}=\binom{0}{0} 0 \overrightarrow{v_{2}}$
a. $\overrightarrow{v_{2}}$ is an eigenvector the eigenvalue 0 .
c) $\overrightarrow{v_{3}}=\binom{0}{0} A \overrightarrow{v_{3}}=\binom{0}{0}$
a. $\overrightarrow{v_{3}}$ is not an eigenvector. (it is $\overrightarrow{0}$)
d) $\overrightarrow{v_{4}}=\binom{k}{k} A \overrightarrow{v_{4}}=\binom{2 k}{2 k} 2 \overrightarrow{v_{4}}$
a. $A \overrightarrow{v_{4}}=A\left(k \overrightarrow{v_{1}}\right)=k A \overrightarrow{v_{1}}=k\left(2 \overrightarrow{v_{1}}\right)=2 \overrightarrow{v_{4}}$
b. If \vec{v} is an eigenvector for λ, so is $k \vec{v}$ for any $k \neq 0$.
e) $\overrightarrow{v_{5}}=\binom{2}{0} A \overrightarrow{v_{5}}=\left(\begin{array}{l}2 \\ 2\end{array}=? \lambda\binom{2}{0}\right.$
a. $\overrightarrow{v_{5}}$ is not an eigen vector
i. $\left(\Delta \overrightarrow{v_{5}}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)$

Ex. 2
Confirm that $\lambda=3$ is an eigenvalue of $A=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$
We look for $\vec{v} \neq 0$ such that $A \vec{v}=\lambda \vec{v}$
$A \vec{v}=3 \vec{v}$
$(A-3 I) \vec{v}=\overrightarrow{0}$
$A-3 I=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}-1 & -4 \\ -1 & -4\end{array}\right)$ ingular
Then there exists $\vec{v} \neq 0$ such that $(\mathrm{A}-3 \mathrm{I}) \vec{v}=\overrightarrow{0}$
Meaning: $A \vec{v}=3 \vec{v}$

Eigenspace

Definition
Suppose $A \in \mathbb{R}^{n \times n}$. The eigenvectors for a given λ span a subspace of \mathbb{R}^{n} called the λ-eigenspace of A.
Note: the λ-eigenspace for matrix A is $\operatorname{Nul}(A-\lambda I)=\{$ eigenvectors $\} \cup\{\overrightarrow{0}\}$
Ex. 3
Construct a basis for the eigenspaces for the matrix whose eigenvalues are given, and sketch the eigenvectors.

$$
\left(\begin{array}{ll}
5 & -6 \\
3 & -4
\end{array}\right) \quad \lambda=-1,2
$$

$A \vec{x}=\lambda \vec{x} \Leftrightarrow(A-\lambda I) \vec{x}=\overrightarrow{0}$

Theorems

Proofs for the most these theorems are in Section 5.1. If time permits, we will explain or prove all/most of these theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues
2. A invertible $\Leftrightarrow 0$ is not an eigenvalue of A.
3. Stochastic matrices have an eigenvalue equal to 1 .
4. If $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}$ are eigenvectors that correspond to distinct eigenvalues, then $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}$ are linearly independent.

Studio 14

Thursday, October 14, 2021 12:25 PM

Def: a matrix is regular if P^{n} has all positive entries for some n.

- What's the probability of being sunny in many many days? $2 / 3$

Transition matrix $P=R \overbrace{\left[\begin{array}{ll}1 / 2 & 1 / 4 \\ S & \\ 1 / 2 & 3 / 4\end{array}\right]}$

- What's the probability of it being sunny in 2 days given that it is rainy today? P_{12}^{2}
- Steady state: a vector x such that $P x=x$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 / 2 & 1 / 4 \\
1 / 2 & -1 / 4
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right]} \\
& \Rightarrow x_{1}=\frac{1}{2} x_{2} \Rightarrow x_{2}=2 x_{1} \\
& x_{1}+x_{2}=1 \\
& \Rightarrow 3 x_{1}=1 \Rightarrow x_{1}=1 / 3 \Rightarrow x_{2}=2 / 3
\end{aligned}
$$

Steady-state vector: $\binom{1 / 3}{2 / 3}$

Worksheet 4.9, Applications to Markov Chains

Worksheet Exercises

1. Determine whether P and Q are a regular stochastic matricies.

$$
P=\left(\begin{array}{ll}
.8 & 0 \\
.2 & 1
\end{array}\right) \quad Q=\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
3 & 1 & 2
\end{array}\right)
$$

P: $\left.\left(\begin{array}{ll}.8 & 0 \\ .2 & 1\end{array}\right) .2 \begin{array}{ll}8 & 0\end{array}\right)=\left(\begin{array}{cc}.64 & 0 \\ .35 & 1\end{array}\right)$ o
$Q:\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2 \\ 3 & 1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2 \\ 3 & 1 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 4 & 4 \\ 6 & 3 & 6 \\ 9 & 9 & 6\end{array}\right) \mathrm{YES}$
2. Consider the Markov chain below

What is the transition matrix? Calculate the steady-state vector.

Transition Matrix:
$\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 4 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 3 / 4\end{array}\right]$
Steady-state vector calculation:
$(P-I) \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 / 2 & 0 & 1 / 4 & 0 \\
1 / 2 & -1 / 2 & 0 & 0 \\
0 & 1 / 2 & -1 / 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
-1 / 2 & 0 & 1 / 4 & 0 \\
0 & -1 / 2 & 1 / 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& -1 / 2 x_{1}+1 / 4 x_{3} \Rightarrow x_{1}=1 / 2 x_{3} \\
& -1 / 2 x_{2}+1 / 4 x_{3} \Rightarrow x_{2}=1 / 2 x_{3}
\end{aligned}
$$

$$
\vec{x}=x_{3}\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 \\
111
\end{array}\right]
$$

$$
x_{3}=2:\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

$\therefore \vec{q}=\left[\begin{array}{l}1 / 4 \\ 1 / 4 \\ 1 / 2\end{array}\right]$

- 70% of people from X stay in X, the remaining 30% move to Y.
- 40% of people from Y stay in Y, the remaining 60% move to X.

The initial populations of X and Y are 100 and 200, respectively.
a. What is the stochastic matrix that represents this situation?
$P=\left[\begin{array}{ll}0.7 & 0.6 \\ 0.3 & 0.4\end{array}\right]$
b. After a long period of time, what is the population in city X ?
$(P-I) \vec{x}=\overrightarrow{0}$
$\left[\begin{array}{ll}0.7 & 0.6 \\ 0.3 & 0.4\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-0.3 & 0.6 \\ 0.3 & -0.6\end{array}\right] \sim\left[\begin{array}{cc}-0.3 & 0.6 \\ 0 & 0\end{array}\right] \sim\left[\begin{array}{cc}-1 & 2 \\ 0 & 0\end{array}\right] \Rightarrow t\left[\begin{array}{l}1 \\ 2\end{array}\right] \Rightarrow\left[\begin{array}{l}2 / 3 \\ 1 / 3\end{array}\right]$
\therefore population of $x_{1}=2 / 3($ total $)=2 / 3(300)=200$
4. Written Explanation Exercise Let P be a stochastic $n \times n$ matrix with positive entries. Give two methods of finding the steady state solution
\circ Solve $\left[\begin{array}{ll}P-I & 0\end{array}\right]$

- Steady state is \approx any column of P^{k} for larger k (only true for regular)

5. A mouse lives in a maze that has at least three rooms. Each room is connected to at least one other room (in other words, every room is connected). At every hour, the mouse moves from the room where it is in, to one of the rooms it is connected to, with equal probability.
a. Design any mouse maze and its corresponding transition matrix P.

b. Is your P regular stochastic?

No

c. In the long run, is there a room that the mouse is more likely to be in at a given time? If so, which room? Note: this problem is related to the PageRank problem that we explore later in this class

$$
\begin{aligned}
P & =\left[\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array}\right] \\
(P-I) \vec{x} & =\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc}
-1 & 1 / 2 & 0 \\
1 & -1 & 1 \\
0 & 1 / 2 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -1 / 2 & 1 \\
1 & 0 & -1 \\
0 & 1 / 2 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
x_{1}=x_{3} \\
x_{2}=2 x_{3} \\
x_{1}+x_{2}+x_{3}=1
\end{array} \quad \Rightarrow\left[\begin{array}{c}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right]\right.
\end{aligned}
$$

Notes:
For $\lambda_{1}=-1$:

$$
A-\lambda_{1} I=A+I=\left(\begin{array}{ll}
6 & -6 \\
3 & -3
\end{array}\right)
$$

$\left\{\binom{1}{1}\right.$ s a basis for the (-1)-eigenspace
For $\lambda_{1}=2$:

$$
A-\lambda_{1} I=A+I=\left(\begin{array}{ll}
3 & -6 \\
3 & -6
\end{array}\right)
$$

$\left\{\binom{2}{1}\right.$ s a basis for the 2-eigenspace

1. $T=\left(\begin{array}{ccc}d_{1} & * & * \\ & \ddots & * \\ (0) & & d_{n}\end{array}\right) \quad(T-\lambda I)=\left(\begin{array}{ccc}d_{1}-\lambda & * & * \\ & \ddots & * \\ (0) & & d_{n}-\lambda\end{array}\right)$
$(T-\lambda I)$ is singular $\Leftrightarrow \lambda \in\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
2. Invertible $\Leftrightarrow A \vec{x}=\overrightarrow{0}$ how only the trivial solution $\vec{x}=\overrightarrow{0}$

$$
\Leftrightarrow 0 \text { is not an eigenvalue }
$$

3. Proof by induction:

$$
\text { If } k=2: \overrightarrow{v_{1}} \rightarrow \lambda_{1}, \overrightarrow{v_{2}} \rightarrow \lambda_{2}: \lambda_{1} \neq \lambda_{2}
$$

$$
\text { If } c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}=\overrightarrow{0} \text { and } c_{1} \neq 0
$$

$$
\text { Then } \overrightarrow{v_{1}}=-\frac{c_{1}}{c_{2}} \overrightarrow{v_{2}}
$$

$$
\begin{aligned}
& \quad \underbrace{A\left(c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}\right)}_{\overrightarrow{0}}=c_{1} A \overrightarrow{v_{1}}+c_{2} A \overrightarrow{v_{2}}=c_{1} \lambda_{1} \overrightarrow{v_{1}}+c_{2} \lambda_{2} \overrightarrow{v_{2}}=-c_{2} \lambda_{1} \overrightarrow{v_{1}}+c_{2} \lambda_{2} \overrightarrow{v_{2}}=c_{2} \underbrace{\left(\lambda_{2}-\lambda_{1}\right)}_{\neq \overrightarrow{0}}=\overrightarrow{\neq 0} \overrightarrow{v_{2}} \\
& \Rightarrow c_{2}=0 \Rightarrow c_{1}=0: \overrightarrow{v_{1}}, \overrightarrow{v_{2}} \text { are linearly independent }
\end{aligned}
$$

Warning!
We can't determine the eigenvalues of a matrix from its reduced form.
Row reductions change the eigenvalues of a matrix.
Ex: suppose $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. The eigenvalues are $\lambda=2,0$ because

$$
\begin{aligned}
& A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\binom{2}{2} 2\binom{1}{1} \\
& A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\binom{0}{0} 0\binom{1}{1}
\end{aligned}
$$

- But the reduced echelon form of A is: $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$
- The reduced echelon form is triangular, and its eigenvalues are: 0 and 1 (triangular matrix)

Section 5.2: The Characteristic Equation

The Characteristic Polynomial
Recall
λ is an eigenvalue of $A \Leftrightarrow(A-\lambda I)$ is not invertible
Therefore, to calculate the eigenvalues of A, we can solve

$$
\operatorname{det}(A-\lambda I)=0
$$

The quantity $\operatorname{det}(A-\lambda I)$ is the characteristic polynomial of A.
The quantity $\operatorname{det}(A-\lambda I)=0$ is the characteristic equation of A.
The roots of the characteristic polynomial are the eigenvalues of A.
Ex. 1
The characteristic polynomial of $A=\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right)$:

$$
|A-\lambda I|=\left[\begin{array}{cc}
5-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]=(5-\lambda)(1-\lambda)-4=\lambda^{2}-6 \lambda+1
$$

So the eigenvalues of A are:

$$
\lambda=\frac{6 \pm \sqrt{36-5}}{2}=3 \pm \frac{\sqrt{32}}{2}=3 \pm 2 \sqrt{2}
$$

Definition
A is a matrix
Trace $(A)=$ sum of the elements of the diagonals
Characteristic Polynomial of $\mathbf{2 \times 2}$ Matricies
Express the characteristic equation of

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

In terms of its determinant. What is the equation when M is singular?

$$
|A-\lambda I|=\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]=(a-\lambda)(d-\lambda)-b c=\lambda^{2}+(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{Trace}(M) \lambda+\operatorname{det}(M)
$$

If the eigenvalues are λ_{1} and λ_{2}

$$
|M-\lambda I|==\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=\lambda^{2}+\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2}
$$

Theorem: A and A^{T} have the same eigenvalues
Proof:
$\overline{\mid A-\lambda} I\left|=\left|(A-\lambda I)^{T}\right|=\left|A^{T}-\lambda I^{T}\right|=\left|A^{T}-\lambda I\right|\right.$
Application: If P is stochastic 1 is an eigenvalue of P
P : the sum of each column is 1
P^{T} : the sum of each row is 1
$P^{T}\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right): 1$ is an eigenvalue of P^{T} and therefore also for P.

Notes:

if M is singular: $\operatorname{det} M=0$

$$
\begin{aligned}
|M-\lambda I|= & \lambda^{2}-\operatorname{Trace}(M) \lambda \\
& =\lambda(-\operatorname{Trace}(M))
\end{aligned}
$$

Algebraic Multiplicity

Definition:
The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

$$
\text { if }|A-\lambda I|=(\lambda-1)^{3}(\lambda+2)^{2}(\lambda-7)
$$

Eigenvalues	Algebraic Multiplicity
1	3
-2	2
7	1

Ex.
Compute the algebraic multiplicities of the eigenvalues for the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Eigenvalues Algebraic Multiplicity
-1
1
$0 \quad 2$
$1 \quad 1$

Geometric Multiplicity

Definition
The geometric multiplicity of an eigenvalue λ is the dimension of $\operatorname{Null}(A-\lambda I)$

1. Geometric multicity is always at least 1 . It can be smaller then algebraic multiplicity
2. Here is the basic example

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left|\begin{array}{cc}
-\lambda & 1 \\
0 & -\lambda
\end{array}\right|=\lambda^{2}
$$

$\lambda=0$ is the only eigenvalue. Its algebraic multiplicity is 2 , but the geometric multiplicity is 1 .

$$
\vec{x} \in \operatorname{Null}(A-0 I)=\operatorname{Null}(A)
$$

$$
\underbrace{A \vec{~}}_{\binom{\tilde{x}_{2}}{0}}=\binom{0}{0} \vec{x}=x_{1}\binom{1}{0}
$$

Ex.
Give an example of a 4×4 matrix with $\lambda=0$ the only eigenvalue, but the geometric multiplicity of $\lambda=0$ is one.

$$
A=\left(\underset{\rightarrow 1 \text { free variable, } \operatorname{dinn}(\operatorname{ull}(A))}{\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)}\right.
$$

Recall: Long-Term Behavior of Markov Chains

Recall:

- We often want to know what happens to a Markov Chain

$$
\overrightarrow{x_{k+1}}=P \overrightarrow{x_{k}}, \quad k=0,1,2, \ldots
$$

as $k \rightarrow \infty$

- If P is regular, then there is a unique steady-state vector

Now lets ask:

- If we don't know whether P is regular, what else might we do to describe the long-term behavior of the system?
- What can eigenvalues tell us about the behavior of these systems?

Example: Eigenvalues and Markov Chains

Consider the Markov Chain

$$
\overrightarrow{x_{k+1}}=P \overrightarrow{x_{k}}=\left(\begin{array}{cc}
0.6 & 0.4 \\
0.4 & 0.6
\end{array}{ }^{\prime} k, \quad k=0,1,2,3, \ldots, \quad \overrightarrow{x_{0}}=\binom{1}{0}\right.
$$

This system can be represented schematically with two nodes, A and B:
0.6

0.4

Goal: use eigenvalues to describe the long-term behavior of our system.
What are the eigenvalues of P ?

$$
P=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.4 & 0.6
\end{array}\right)
$$

P is stochasic: 1
$\lambda_{1}+\lambda_{2}=1.2: 0.2$

What are the corresponding eigenvalues of P ?

$$
\begin{aligned}
\lambda_{1}= & 1:\left(\begin{array}{ll|l}
P-I & \mid & 0
\end{array}\right)=\left(\begin{array}{cc|c}
-0.4 & 0.4 & 0 \\
0.4 & -0.4 & 0
\end{array}\right) \\
& \rightarrow \overrightarrow{v_{1}}=\binom{1}{1} \\
\lambda_{2}= & 0.2:\left(\begin{array}{ll}
P-0.2 I & \mid 0
\end{array}\right)=\left(\begin{array}{ll|l}
0.4 & 0.4 & 0 \\
0.4 & 0.4 & 0
\end{array}\right) \\
& \rightarrow \overrightarrow{v_{2}}=\binom{1}{-1}
\end{aligned}
$$

Note: $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ are a basis of \mathbb{R}^{2}
Use the eigenvalues and eigenvectors of P to analyze the long-term behavior of the system. In other words, determine what $\overrightarrow{x_{k}}$ tends to as $k \rightarrow \infty$.

$\overrightarrow{x_{0}}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}$
$\overrightarrow{x_{1}}=P \overrightarrow{x_{0}}=P\left(c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}\right)$
$=c_{1} P_{1} \overrightarrow{v_{1}}+c_{2} P_{2} \overrightarrow{v_{2}}$
$=c_{1} \lambda_{1} \overrightarrow{v_{1}}+c_{2} \lambda_{2} \overrightarrow{v_{2}}$
$\overrightarrow{x_{2}}=P^{2} \overrightarrow{x_{0}}=P\left(c_{1} \lambda_{1} \overrightarrow{v_{1}}+c_{2} \lambda_{2} \overrightarrow{v_{2}}\right)$

$$
=c_{1} \lambda_{1} P_{1} \overrightarrow{v_{1}}+c_{2} \lambda_{2} P_{2} \overrightarrow{v_{2}}
$$

$=c_{1} \lambda_{2}{ }^{2} \overrightarrow{v_{1}}+c_{2} \lambda_{2}{ }^{2} \overrightarrow{v_{2}}$
$\overrightarrow{x_{k}}=P^{k}=c_{1} \lambda_{2}{ }^{k} \overrightarrow{v_{1}}+c_{2} \lambda_{2}{ }^{k} \overrightarrow{v_{2}}$
but $\left\{\begin{array}{c}\lambda_{1}{ }^{k}=1^{k}=1 \\ \lambda_{2}{ }^{k}=(0.2)^{k} \xrightarrow{k \rightarrow \infty} \xrightarrow{\rightrightarrows} 0\end{array}\right.$
Thus:

$$
\lim _{k \rightarrow \infty} \overrightarrow{x_{k}}=\underbrace{c_{1} \overrightarrow{v_{1}}}_{\text {our unioue ctendv- }}
$$

our unique steady-state vector

$$
\text { if } \begin{aligned}
\overrightarrow{x_{0}} & =\binom{P}{1-P} \text { here } 0 \leq p \leq 1 \\
& \overrightarrow{x_{0}}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}} \\
& \binom{P}{1-P} c_{1}\binom{1}{1} c_{2}\binom{1}{-1} \neq\binom{ c_{1}+c_{2}}{c_{1}-c_{2}} \\
& \left\{\begin{array}{c}
c_{1}+c_{2}=P \\
c_{1}-c_{2}=1-P
\end{array}\right. \\
& \rightarrow c_{1}=1 / 2, \quad c_{2}=P-1 / 2
\end{aligned}
$$

Thus

$$
\mathrm{c}_{1} \overrightarrow{v_{1}}=\binom{1 / 2}{1 / 2}
$$

Similar Matrices

Definition
Two $n \times n$ matrices A and B are similar if there is a matrix P so that $A=P B P^{-1}$.
Theorem
If A and B are similar, then they have the same characteristic polynomial.
If time permits, we will explain or prove this theorem in lecture. Note:

- Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

```
            \(A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\) nd \(\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) B\)
    \(|A-\lambda I|=\left|\begin{array}{cc}-\lambda & 1 \\ 0 & -\lambda\end{array}\right|=\lambda^{2}=|B-\lambda I|\)
    but \(P B P^{-1}=\left(\begin{array}{rr}0 & 0 \\ 0 & 0\end{array}\right)\)
            \(\rightarrow A\) and \(B\) are not similar
    \(|A-\lambda I|=\left|P B P^{-1}-P(\lambda I) P^{-1}\right|=\left|P(B-\lambda I) P^{-1}\right|=|P||B-\lambda I|\left|P^{-1}\right|=|B-\lambda I|\)
```

Proof

Additional Examples

1. True or false
a. If A is similar to the identity matrix, then A is equal to the identity matrix.
i. If $A=(P I) P^{-1}=P P^{-1}=I$
ii. True
b. A row replacement operation on a matrix does not change its eigenvalues.
i. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$
ii. False
2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2 ?
a. $\left(\begin{array}{cc}-3 & k \\ 2 & -6\end{array}\right)$
i. "Highway": $A=\left(\begin{array}{cc}-3 & k \\ 2 & -6\end{array}\right)$
if $\lambda_{1}=\lambda_{2}: \lambda_{1}+\lambda_{2}=\operatorname{Trace}(A)=-9$
then: $\operatorname{det}(A)=18-2 k=\lambda_{1} \lambda_{2}=81 / 4 \Rightarrow k=-9 / 8$

Studio 15

Tuesday, October 19, 2021 12:27 PM

Def. λ is an eigenvalue of A.
if $A \vec{x}=\lambda \vec{x}$ for some $\vec{x} \neq \overrightarrow{0}$.
Here, x is called an eigenvector.
(x, λ) is an eigenpair.

How to find eigenvalues?
λ eigenvalue $\Leftrightarrow A \vec{x}=\lambda \vec{x}$ for some $\vec{x} \neq \overrightarrow{0}$.

$$
\begin{aligned}
& \Leftrightarrow(A-\lambda I) \vec{x}=\overrightarrow{0} \text { some } \vec{x} \neq \overrightarrow{0} . \\
& \Leftrightarrow A-\lambda I \text { not invertible } \\
& \Leftrightarrow \operatorname{det}(A-\lambda I)=0 .
\end{aligned}
$$

The eigenvalues of A are given by zeros of $p(\lambda)=\operatorname{det}(A-\lambda I)$, otherwise known as the characteristic polynomial of A.
Ex.
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$p(\lambda)=\operatorname{det}\left(\left[\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right] \neq \lambda^{2}-1=(\lambda+1)(\lambda-1) \Rightarrow\right.$ eigenvalues are 1 and -1 (alg. mult 1)
Say λ is an eigenvalue. Let $S=\{\vec{x}: A \vec{x}=\lambda \vec{x}\}$. Then S is a subspace. The geometric multiplicity of $\lambda=\operatorname{dim}(S)$.
Find \vec{x} such that $\underbrace{A \vec{x}=\lambda \vec{x}}_{(A-\lambda I) \vec{x}=\overrightarrow{0}}$

Worksheet 5.1 and 5.2: Eigenvectors and Eigenvalues, The Characteristic Equation

Worksheet Exercises

1. If possible, give an example of:
a. A 2×2 matrix, $A \in \mathbb{R}^{2 \times 2}$, whose eigenvalues have non-zero imaginary components.
i. $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
b. A non-zero 2×2 matrix, $A \in \mathbb{R}^{2 \times 2}$, that is not triangular, but has a zero eigenvalue.
i. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
2. Determine whether \vec{u} and \vec{v} are eigenvectors of A. If so, what are their eigenvalues? Do not find the characteristic polynomial.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
-3 & -3 & 2 \\
6 & 4 & 0 \\
5 & 3 & 0
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \quad \vec{v}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& A \vec{u}=\left(\begin{array}{ccc}
-3 & -3 & 2 \\
6 & 4 & 0 \\
5 & 3 & 0
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right) \\
& \text { Eigenvalue }=-2 \\
& A \vec{v}=\left(\begin{array}{ccc}
-3 & -3 & 2 \\
6 & 4 & 0 \\
5 & 3 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-4 \\
10 \\
8
\end{array}\right) \\
& \text { No eigenvalue }
\end{aligned}
$$

3. T is a linear transformation in \mathbb{R}^{2}. Without constructing A, identify one eigenvalue of A.
a. T reflects points across the line $x_{1}=-x_{2}$.

$$
\lambda=1
$$

b. T projects points onto one of the coordinate axes. $\lambda=0$
4. For what values of k (if any) does A have one real eigenvalue of algebraic multipliciy 2?

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
-4 & k \\
2 & -2
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-4-\lambda & k \\
2 & -2-\lambda
\end{array}\right|=(-4-\lambda)(-2-\lambda)-2 k=8+4 \lambda+2 \lambda+\lambda^{2}-2 k=\lambda^{2}+6 \lambda+8-2 k \Rightarrow k=-1 / 2
\end{aligned}
$$

5. $\operatorname{tr}(A)$ is the sum of the elements on the main diagonal of A. If $\operatorname{tr}(A)=2, \operatorname{det}(A)=I$, and $A \in \mathbb{R}^{2 \times 2}$, compute the eigenvalues of A. Hint: let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
a. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], p(\lambda)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$
6. Written Explanation Exercise If $A v=\lambda v$ with $v \neq 0$ annd A is invertible, can you find an eigenvalue/eigenvector of A^{-1} ? Can A has a zero eigenvalue?
a. $A \vec{v}=\lambda \vec{v} \quad(\vec{v} \neq 0)$

$$
A^{-1} A=A^{-1} \lambda \vec{v} \Rightarrow \vec{v}=\lambda A \vec{v} \Rightarrow A^{-1} \vec{v}=\frac{1}{\lambda} \vec{v}
$$

Lecture 24
Wednesday, October 20, 2021 3:00 PM

Review Session:
If $A=P B P^{-1}$ and $B \vec{v}=\lambda \vec{v}$
$A \vec{w}=\lambda \vec{w}$ such that $\vec{w}=P \vec{v}$

Unit 3

Saturday, November 13, 2021 8:49 PM

Material Covered:
Chapter 5: Eigenvalues and Eigenvectors

- Section 5.3 : Diagonalization
- Section 5.5 : Complex Eigenvalues

Chapter 10 : Finite-State Markov Chains

- Section 10.2 : The Steady-State Vector and Page Rank

Chapter 6: Orthogonality and Least Squares

- Section 6.1 : Inner Product, Length, and Orthogonality
- Section 6.2 : Orthogonal Sets
- Section 6.3 : Orthogonal Projections
- Section 6.4 : The Gram-Schmidt Process
- Section 6.5 : Least-Squares Problems
- Section 6.6 : Applications to Linear Models

Lecture 25

Friday, October 22, 2021 4:01 PM

Notes:

Section 5.3: Diagonalization

Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.
The following are all diagonal matrices.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad[2], \quad I_{n}, \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We'll only be working with diagonal square matrices in this course.

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Powers of Diagonal Matrices

If A is diagonal, then A^{k} is easy to compute. For example,

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array}\right) \\
& A^{2}=\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array} \int_{0}^{3}\right. \\
& 0.5
\end{aligned} \neq\left(\begin{array}{cc}
3^{2} & 0 \\
0 & (0.5)^{2}
\end{array}\right)
$$

But what if A is not diagonal?

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is diagonalizable if it is similar to a diagonal matrix, D. That is, we can write

$$
\begin{aligned}
& A=P D P^{-1} \\
& A^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1} \\
& \vdots \\
& A^{k}=P D^{k} P^{-1}
\end{aligned}
$$

Theorem:
If A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means "if and only if".
Also note that $A=P D P^{-1}$ if and only if

$$
A=\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \cdots & \overrightarrow{v_{n}}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \lambda_{n}
\end{array}\right]\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \cdots & \overrightarrow{v_{n}}
\end{array}\right]^{-1}
$$

Where $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are linearly independent eigenvectors, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in order)
Proof:
If A has n linearly independent eigenvectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ for the eigen values $\lambda_{1}, \ldots, \lambda_{n}$
\rightarrow define $P=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right): P$ is invertible
$A P=\left(A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{n}}\right)=\left(\lambda_{1} \overrightarrow{v_{1}}, \ldots, \lambda_{n} \overrightarrow{v_{n}}\right)$

$$
\begin{aligned}
P D= & \left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right)\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)=\left(\lambda_{1} \overrightarrow{v_{1}}, \ldots, \lambda_{n} \overrightarrow{v_{n}}\right) \quad D=\left(\begin{array}{ccc}
\lambda_{1} & & (0) \\
& \ddots & \\
(0) & & \lambda_{n}
\end{array}\right)
\end{aligned}
$$

Ex. 1
Diagonalize if possible
$A=\left(\begin{array}{cc}2 & 6 \\ 0 & -1\end{array}\right)$
Eigenvalue: 2, -1
$\lambda_{1}=2:\left(\begin{array}{lll}A-2 I & \mid & 0\end{array}\right)=\left(\begin{array}{cc|c}0 & 6 & 0 \\ 0 & -3 & 0\end{array}\right)$
Take $\overrightarrow{v_{1}}=\binom{1}{0}$
$\lambda_{2}=-1:\left(\begin{array}{lll}A+I & \mid & 0\end{array}\right)=\left(\begin{array}{ll|l}3 & 6 & 0 \\ 0 & 0 & 0\end{array}\right)$
Take $\overrightarrow{v_{2}}=\binom{-2}{1}$
Define: $P=\left(\begin{array}{cc}1 & -2 \\ 0 & 1^{\prime}\end{array}\right) D=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$
Then $A=P D P^{-1}$

Ex. 2
Diagonalize if possible
$B=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$
Eigenvalue: 3
$\left(\begin{array}{lll}B-3 I & \mid & 0\end{array}\right)=\left(\begin{array}{ll|l}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \rightarrow 1$ free variable
$\operatorname{dinN}(\operatorname{ull}(B-3 I) \neq 1$
B is not diagonizable

Distinct Eigenvalues

Theorem
If A is $n \times n$ and has n disctinct eigenvalues, then A is diagonalizable.
Why does this theorem hold?
5.1: eigenvectors for distinct eigenvalues are linearly independent.

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable? NO!
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ diagonizable

Non-Distinct Eigenvalues

Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}, k \leq n$
- $a_{i}=$ algebraic multiplicity of λ_{i}
- $d_{i}=$ dimension of λ_{i} eigenspace ("geometric multiplicity")

Then

1. $d_{i}<a_{i}$ for all i
2. A is diagonalizable $\Leftrightarrow \Sigma d_{i}=n \Leftrightarrow d_{i}=a_{i}$ for all $d_{i} i$
3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^{n}.

Ex.

Ex. 3
The eigenvalues of A are $\lambda=3,1$. If possible, construct P and D such that $A P=P D$

$$
A=\left(\begin{array}{ccc}
7 & 4 & 16 \\
2 & 5 & 8 \\
-2 & -2 & -5
\end{array}\right)
$$

$\lambda_{1}=1:\left(\begin{array}{lll}A-I & \mid & 0\end{array}\right)=\left(\begin{array}{ccc|c}6 & 4 & 16 & 0 \\ 2 & 4 & 8 & 0 \\ -2 & -2 & -6 & 0\end{array}\right) \sim\left(\begin{array}{ccc|c}3 & 2 & 8 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & 1 & 3 & 0\end{array}\right) \sim\left(\begin{array}{lll|l}1 & 1 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\operatorname{Null}(A-I)=\operatorname{Span}\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)$
$\lambda_{2}=3:\left(\begin{array}{lll}A-3 I & \mid & 0\end{array}\right)=\left(\begin{array}{ccc|c}4 & 2 & -2 & 0 \\ 2 & 2 & 8 & 0 \\ -2 & -2 & -8 & 0\end{array}\right) \sim\left(\begin{array}{ccc|c}1 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\vec{x} \in \operatorname{Null}(A-3 I)$ if

$$
\left.\begin{array}{rl}
\vec{x} & =\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cc}
-x_{2} & -4 x_{3} \\
x_{2} & \\
\text { Now: } P & =\left(\begin{array}{ccc}
-2 & -1 & -4 \\
-1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad D=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right) \\
0 & 3
\end{array} 0\right. \\
0 & 0
\end{array}\right): \quad A=P D P^{-1} . \quad . \quad .
$$

Additional Example
Note that

$$
\overrightarrow{x_{k}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \overrightarrow{x_{k-1}}, \quad \overrightarrow{x_{0}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

Generates a well-known sequence of numbers

Use a diagonalization to find a matrix equation that gives the $n^{\text {th }}$ number in this sequence

$$
\begin{aligned}
& \overrightarrow{x_{0}}=\binom{F_{1}}{F_{2}}\binom{1}{1} \\
& \overrightarrow{x_{1}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array} 1 \begin{array}{l}
F_{2} \\
F_{2}
\end{array}\right)\binom{F_{1}}{F_{1}+F_{2}}\binom{F_{2}}{F_{3}}\binom{1}{2} \\
& \overrightarrow{x_{2}}=\binom{2}{3} \overrightarrow{x_{3}}=\binom{3}{3} \overrightarrow{x_{3}}=\binom{5}{8} \\
& \rightarrow F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) \\
& \therefore \overrightarrow{x_{n}}=P D^{n} P^{-1} \overrightarrow{x_{0}}
\end{aligned}
$$

Notes:

Chapter 5.5: Complex Eigenvalues

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square
roots of negative numbers. For example:

$$
x^{2}+1=0
$$

The roots of this equation are:

$$
\pm \sqrt{-1}
$$

We usually write $\sqrt{-1}$ as i (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C}, where

$$
\mathbb{C}=\{a+b i \mid a, b \text { in } \mathbb{R}\}
$$

We can identify \mathbb{C} with $\mathbb{R}^{2}: a+b i \leftrightarrow(a, b)$
We can add and multiply complex numbers as follows:
$(2-3 i)+(-1+i)=1-2 i$
$(2-3 i)(-1+i)=-2+2 i+3 i-3 i^{2}=1+5 i$

Complex Conjugate, Absolute Value, Polar Form

We can conjugate complex numbers: $\overline{a+b i}=a-b i$
The absolute value of complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$
We can write complex numbers in polar form: $a+b i=r(\cos (\varnothing)+i \sin (\varnothing))$

Complex Conjugate Properties

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^{n}$, it can be shown that:

- $\overline{(x+y)}=\bar{x}+\bar{y}$
- $\overline{A \vec{v}}=A \overrightarrow{\vec{v}}$
- $\operatorname{lm}(x \bar{x})=0$

$$
\begin{aligned}
A= & \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \vec{v}=\binom{v_{1}}{v_{2}} \mathbb{C}^{2} \\
& \overline{A \vec{v}}=\left(\frac{\overline{v_{1}+2 v_{2}}}{3 v_{1}+4 v_{2}}\right)=\left(\frac{\overline{v_{1}}+\overline{2 v_{2}}}{3 v_{1}}+\overline{4 v_{2}}\right)=A\left(\frac{\overline{v_{1}}}{\overline{v_{2}}}\right)
\end{aligned}
$$

$x \bar{x}=(a+b i)(a-b i)=a^{2}+b^{2}$
Ex. True or false: if x and y are complex numbers, then

$$
\overline{(x y)}=\bar{x} \bar{y}
$$

True: $x y=(a+b i)(c+d i)=a c-b d+(a d-b c) i$
$\overline{x y}=a c-b d-(a d-b c) i$
$\bar{x} \bar{y}=(a+b i)(c-d i)=a c-b d-(a d+b c) i$
Applications: $\overline{x^{2}}=\bar{x} \bar{x}=\overline{x^{2}} \ldots \overline{x^{n}}=\bar{x}^{n}$
$\measuredangle P$ real polynomial: $\overline{P(x)}=P(\bar{x})$
Polar Form and the Complex Conjugate
Conjugation reflects points across the real axis

Euler's Formula
Suppose z_{1} has angle \emptyset_{1}, and z_{2} has angle \emptyset_{2}. $\operatorname{lm}(z)$

The product $z_{1} z_{2}$ has angle $\emptyset_{1}+\emptyset_{2}$ and modulus $|z||w|$. Easy to remember using Euler's formula.

$$
z=|z| e^{i \phi^{2}}
$$

The product $z_{1} z_{2}$ is:

$$
z_{3}=z_{1} z_{2}=\left|\emptyset_{1}\right| e^{i \phi \ell_{2}}\left|e^{i \phi_{2}} \neq\left|z_{1}\right|\right| z_{2} \mid e^{i\left(\phi_{1}+\emptyset_{2}\right)}
$$

Complex Number and Polynomials

Theorem: Fundamental Theorem of Algebra
Every polynomial of degree n has exactly n complex roots, counting multiplicity.

Theorem

1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial $p(x)$, then the conjugate $\bar{\lambda}$ is also a root of $p(x)$.
2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v}, then $\bar{\lambda}$ is an eigenvalue of A with eigenvector $\overline{\vec{v}}$.
a. $p(\lambda)=0$
$\bar{x}(=\overline{0}=0$
b. $\overline{A \vec{v}}=\overline{\lambda \vec{v}}=A \overline{\vec{v}}=\bar{\lambda} \overline{\vec{v}}$

Ex.
Four of the eigenvalues of a 7×7 matrix are $-2,4+i,-4-i$, and i.
What are the other eigenvalues?
Eigenvalues:

$$
\begin{aligned}
& -2 \\
& 4+i \rightarrow 4-i \\
& -4-i \rightarrow-4+i \\
& 2 \rightarrow-i
\end{aligned}
$$

Ex. 3
The matrix that rotates vectors by $\emptyset=\pi / 4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2}$, il

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{cc}
\cos (\varnothing) & -\sin (\phi) \\
\sin (\varnothing) & \cos (\varnothing)
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

What are the eigenvalues of A ? Express them in polar form.

$$
\begin{array}{r}
A=r\left(\begin{array}{cc}
\cos (\varnothing) & -\sin (\varnothing) \\
\sin (\emptyset) & \cos (\varnothing)
\end{array}\right) \\
|A-\lambda I|=\lambda^{2}-2 \lambda+2 \\
\lambda_{1,2}=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i
\end{array}
$$

Ex.
The matrix in the previous example is a special case of this matrix:

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Calculate the eigenvalues of C and express them in polar form.

$$
\begin{aligned}
& |C-\lambda I|=\lambda^{2}-2 a \lambda+a^{2}+b^{2} \\
& \lambda_{1,2}=\frac{2 \pm \sqrt{4 a^{2}-4\left(a^{2}+b^{2}\right)}}{2}=a \pm \sqrt{-b^{2}}=a \pm i b \\
& \lambda=\sqrt{a^{2}+b^{2}} e^{ \pm \tan ^{-1}\left(\frac{\bar{b}}{\bar{a}}\right)} \\
& C=\sqrt{a^{2}+b^{2}}\left(\begin{array}{cc}
a / \sqrt{a^{2}+b^{2}} & -b / \sqrt{a^{2}+b^{2}} \\
b / \sqrt{a^{2}+b^{2}} & a / \sqrt{a^{2}+b^{2}}
\end{array}\right)=r\left(\begin{array}{cc}
\cos (\varnothing) & -\sin (\varnothing) \\
\sin (\varnothing) & \cos (\varnothing)
\end{array}\right)
\end{aligned}
$$

Diagonalization

Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i($ where $b \neq 0)$ and associated eigenvector \vec{v}. Then we may construct the diagonalization

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{ll}
\operatorname{Re}(\vec{v}) & \operatorname{Im}(\vec{v})) \text { and } C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
\end{array}\right.
$$

Note that following.

- C is referred to as a rotation dilation matrix, because it is the composition of a rotation by \emptyset and dilation by r.
- The proof for why the columns of P are always linearly independent is a bit long, it goes beyond the scope of this course.

Worksheet 5.3, Diagonalization

Worksheet Exercises

1. Recall from lecture: matrix A is diagonalizable if it can be written as $A=P D P^{-1}$
a. P is a matrix whose columns are linearly independent eigenvector of A
b. D is a diagonal matrix
c. The elements on the main diagonal of D are eigenvalues of A
d. A diagonal matrix is a matrix that in which nondiagonal entries are 0 .
e. The geometric multiplicity of an eigenvalue is:
i. $\operatorname{din}(u l l(A-\lambda I))$ how many linearly independent eigenvectors exist
f. A matrix can be diagonalized when the geometric multiplicities of all the eigenvalues:
i. Is equal to the algebraic multiplicity of eigenvalues
2. If possible, construct P and D so that $A=P D P^{-1}$. Eigenvalues of A are given.
а. $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right), \lambda=2,2,5$ $A-2 I=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$
Suppose $\vec{v}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is an eigenvector for $\lambda=2$
$A \vec{v}=2 \vec{v}$
$(A-2 I) \vec{v}=A \vec{v}-2 \vec{v}=0$
$\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=x_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
\therefore For $\lambda=2$,

$$
\overrightarrow{v_{1}}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \overrightarrow{v_{2}}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

$A-5 I=\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right)$
Suppose $\vec{v}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is an eigenvector for $\lambda=5$
$A \vec{v}=5 \vec{v}$
$(A-5 I) \vec{v}=A \vec{v}-5 \vec{v}=0$
$\left(\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=x_{1}\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
\therefore For $\lambda=5$

$$
\overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right)^{-1}
$$

b. $A=\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right) d=-2,5$

$$
A+2 I=\left(\begin{array}{ll}
3 & 3 \\
4 & 5
\end{array}\right)
$$

$$
\text { Suppose } \vec{v}=\binom{\vec{x}_{1}}{x_{2} \oint} \text { an eigenvector for } \lambda=-2
$$

$$
A \vec{v}=-2 \vec{v}
$$

$$
(A-2 I) \vec{v}=A \vec{v}+2 \vec{v}=0
$$

$$
\begin{aligned}
& (A-L T) v=A v+2 v=0 \\
& \left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right) x_{1}\left[\begin{array}{l}
3 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

\therefore NOT DIAGONALIZABLE
c. $A=\left(\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right)$
3. If possible, give an example of:
a. A singular 2×2 matrix in echelon form that can be diagonalized.
b. A singular 2×2 matrix in echelon form that cannot be diagonalized.
c. A invertible 2×2 matrix in echelon form that can be diagonalized.
d. A invertible 2×2 matrix in echelon form that cannot be diagonalized.
4. Indicate whether the statements are true or false.

If A is diagonalizable, then so is A^{2}.
If A^{2} is diagonalizable, then so is A.
5. Written Explanation Exercise Given an example of an upper triangular 4×4 matrix A such that 0 is its only eigenvalue and such that its eigenspace is 3 -dimensional. Explain why the eigenspace has dimension 3 .

Worksheet 5.5, Complex Eigenvalues

Worksheet Exercises

1. Indicate whether the statements are true or false.
a. There exists a real 2×2 matrix with the eigenvalues i and $2 i$.
i. False
b. Every real 3×3 matrix must have a real eigenvalue.
i. True
2. A is a composition of a rotation and a scaling. Give the angle of rotation, \emptyset, and the scale factor, r
a. $A=\left(\begin{array}{cc}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right)=r\left(\begin{array}{cc}\cos (\phi) & -\sin (\phi) \\ \sin (\varnothing) & \cos (\varnothing)\end{array}\right)\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
b. $\varnothing=\pi / 6, r=2$
3. Let $A=\left(\begin{array}{cc}4 & -1 \\ 2 & 6\end{array}\right)$ ind an invertible matrix P and a rotation-dilation matrix C such that $A=P C P^{-1}$
a. $P^{-1} C P=A=\left(\begin{array}{cc}4 & -1 \\ 2 & 6\end{array}\right)$
b. Solve λ
i. $\lambda=5 \pm i$
ii. Choose $\lambda=5-i$
iii. $\quad C=\left(\begin{array}{ll}\operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\ \operatorname{Im}(\lambda) & \operatorname{Re}(\lambda)\end{array}\right)\left(\begin{array}{cc}5 & 1 \\ -1 & 5\end{array}\right)$
iv. $\vec{v}=\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$
v. $P=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$
4. Matrix A is a 2×2 matrix that satisfies the equality
a. $A^{2}+2 A=-6 I_{2}$
I_{2} is the 2×2 identity matrix. Compute the eigenvalues of A.
5. Written Explanation Exercise Can a 7×7 have 2 real eigenvalues and 5 non-real eigenvalues? If A is an $n \times n$ matrix and n matrix and n is odd, why does A have a real eigenvalues?

Ex.
If possible, construct matrices P and C such that $A P=P C$

```
    \(A=\left(\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right)\)
\(|A-\lambda I|=\lambda^{2}-4 \lambda+5\), eigenvalues: \(\lambda=\frac{4 \pm \sqrt{16-20}}{2}=2 \pm i\)
Take \(2-i, a-b i: a=2, b=1 \quad{ }^{*} C=\left(\begin{array}{cc}a & -2 \\ b & a\end{array}\right)\)
    \(\vec{v}\) eigenvector for \(\lambda:\left(\begin{array}{lll}A-\lambda I & \mid & 0\end{array}\right)=\left(\begin{array}{cc|c}-1+i & -2 & 0 \\ 1 & 1+i & 0\end{array}\right)\)
```

 First row: \((-1+i) x_{1}=2 x_{2}\)
 For example, take \(x_{1}=2: x_{2}=-1+i\)
 \(\vec{v}=\binom{2}{-1+i}\binom{2}{-1} i\binom{0}{1}\)
 For \(p=\left(\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right)\) nd \(C=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)\)
 Then, \(A=P C P^{-1}\)

Section 10.2: The Steady-State Vector and PageRank

Steady State Vectors

Recall the car rental problem from our Section 4.9 lecture.
Problem
A car rental company has 3 rental locations, A, B, and C.

Rented From						
		A	B	C		
	A	.8	.1	.2		
Returned To	B	.2	.6	.3		
	C	.0	.3	.5		

There are 10 cars at each location today, what happens to the distribution of cars after a long time?
Long Term Behavior
Can use the transition matrix, P, to find the distribution of cars after 1
week:

$$
\overrightarrow{x_{1}}=P \overrightarrow{x_{0}}
$$

The distribution of cars after 2 weeks is:

$$
\overrightarrow{x_{2}}=P \overrightarrow{x_{1}}=P P \overrightarrow{x_{0}}
$$

The distribution of cars after n weeks is:

$$
\overrightarrow{x_{n}}=P^{n} \overrightarrow{x_{0}}
$$

Long Term Behavior

To investigate the long-term behavior of a system that has a regular
transition matrix P, we could:

1. compute the steady-state vector, \vec{q}, by solving $\vec{q}=P \vec{q}$.
2. compute $P^{n} \overrightarrow{x_{0}}$ for large n.
3. compute P^{n} for large n, each column of the resulting matrix is the steady-state

Theorem 1

If P is a regular $\mathrm{m} \times \mathrm{m}$ transition matrix with $\mathrm{m} \geq 2$, then the following statements are all true.

1. There is a stochastic matrix Π such that

$$
\lim _{n \rightarrow \infty} P^{n}=\Pi
$$

2. Each column of Π is the same probability vector \vec{q}.
3. For any initial probability vector $\overrightarrow{x_{0}}$,

$$
\lim _{n \rightarrow \infty} P^{n} \overrightarrow{x_{0}}=\vec{q}
$$

4. P has a unique eigenvector, \vec{q}, which has eigenvalue $\lambda=1$.
5. The eigenvalues of P satisfy $|\lambda| \leq 1$.

We will apply this theorem when solving PageRank problems.
$\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ basis of eigenvectors
for $\lambda_{1}, \ldots, \lambda_{n}$
$\overrightarrow{x_{0}}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{n} \overrightarrow{v_{n}}$
$P^{k} \overrightarrow{x_{0}}=c_{1} \lambda_{1}{ }^{k} \overrightarrow{v_{1}} \underbrace{}_{\left|\lambda_{j}\right|<1}+\cdots+c_{n} \lambda_{n}{ }^{k} \overrightarrow{v_{n}}$

$$
\text { For } j=2
$$

$$
\text { Thus: } \lambda_{j}^{k} \underset{k \rightarrow+\infty}{\longrightarrow} 0
$$

Ex. 1
A set of web pages link to each other according to this diagram.

Page A has links to pages B and D.
Page B has links to pages A, C and D
We make two assumptions:
a) A user on a page in this web is equally likely to go to any of the pages that their page links to.
b) If a user is on a page that does not link to other pages, the user stays at that page.

Use these assumptions to construct a Markov chain that represents how users navigate the above web.
Solution:
$P=\left(\begin{array}{ccccc}0 & 1 / 3 & 1 / 2 & 0 & 0 \\ 1 / 2 & 0 & 1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 & 0 & 0 \\ 1 / 2 & 1 / 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$

Transition Matrix, Importance, and PageRank

- The square matrix we constructed in the previous example is a transition matrix. It describes how users transition between pages in the web.
- The steady-state vector, \vec{q}, for the Markov-chain, can characterize the long-term behavior of users in a given web.
- If \vec{q} is unique, the importance of a page in a web is given by its corresponding entry in \vec{q}.
- The PageRank is the ranking assigned to each page based on its importance. The highest ranked page has PageRank 1, the second PageRank 2, and so on.
- Two pages with same importance receive the same PageRank (some other method would be needed to resolve ties)
Is the transition matrix in Example 1 a regular matrix? NO
If column k is just points to row k, then the matrix is non-regular
$\overrightarrow{x_{0}}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right) \rightarrow \overrightarrow{x_{1}}=P\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right) \Rightarrow \overrightarrow{x_{n}}=P^{n}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)=\overrightarrow{e_{S}}$

Adjustment 1
If a user reaches a page that does not link to other pages, the user will choose any page in the web, with equal probability, and move to that page.

Let's denote this modified transition matrix as P_{*}. Our transition matrix in Example 1 becomes:
$P=\left(\begin{array}{ccccc}0 & 1 / 3 & 1 / 2 & 0 & 0 \\ 1 / 2 & 0 & 1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 & 0 & 0 \\ 1 / 2 & 1 / 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)=P_{*}=\left(\begin{array}{ccccc}0 & 1 / 3 & 1 / 2 & 0 & 1 / 5 \\ 1 / 2 & 0 & 1 / 2 & 0 & 1 / 5 \\ 0 & 1 / 3 & 0 & 0 & 1 / 5 \\ 1 / 2 & 1 / 3 & 0 & 0 & 1 / 5 \\ 0 & 0 & 0 & 1 & 1 / 5\end{array}\right)$
Adjustment 2
A user at any page will navigate to any page among those that their page links to with equal probability p, and to any page in the web with equal probability $1-p$. The transition matrix becomes

$$
G={ }_{p} P_{*}+(1-p) k
$$

All the elements of the $n \times n$ matrix k are equal to $1 / n$.
p is referred to as the damping factor, Google is said to use $p=0.85$.
With adjustments 1 and 2 , our the Google matrix is:

Computing Page Rank

- Because G is stochastic, for any initial probability vector $\overline{x_{0}}$
- $\lim _{n \rightarrow \infty} G^{n} \overrightarrow{x_{0}}-\vec{q}$
- We can obtain steady-state evaluating $G^{n} \overrightarrow{x_{0}}$ for large n, by solving $G \vec{q}=\vec{q}$, or by evaluating $\overrightarrow{x_{n}}=G \overrightarrow{x_{n-1}}$ for large n.
- Elements of the steady-state vector give the importance of each page in the web, which can be used to determine PageRank.
- Largest element in steady-state vector corresponds to page with PageRank 1, second largest with PageRank 2, and

so on

On an exam

- problems that require a calculator will not be on your exam
- you may construct your G matrix using factions instead of decimal expansions

Studio 17

Thursday, October 28, 2021 12:34 PM

$G=\underbrace{P^{*}}_{p^{\text {transition matrix }}}+(1-p) \underbrace{k}_{\text {regulaization }}$
$P^{*}=\left[\begin{array}{ccc}0 & 0 & 1 / 3 \\ 1 / 2 & 0 & 1 / 3 \\ 1 / 2 & 1 & 1 / 3\end{array}\right]$
$k=\left[\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right]$
Solve $\left(\begin{array}{lll}G-I & \mid & 0\end{array}\right)$

Find a solution v to whose entries add to $1, v$ is a steady state

Say v is the steady.
E.G. $v=\left[\begin{array}{l}.2 \\ .5 \\ .\end{array}\right] \Rightarrow v>w>u$
(not the actual SS)

Worksheet 10.2, The Steady-State Vector and Page Rank

Worksheet Exercises

1. A set of web pages link to each other according to this diagram.

a. Create the transition matrix, P, for this web.

$$
\text { i. } P=\left(\begin{array}{ccccc}
0 & 1 / 3 & 1 / 2 & 0 & 1 / 5 \\
1 & 0 & 1 / 2 & 0 & 1 / 5 \\
0 & 1 / 3 & 0 & 0 & 1 / 5 \\
0 & 1 / 3 & 0 & 0 & 1 / 5 \\
0 & 0 & 0 & 1 & 1 / 5
\end{array}\right)
$$

b. Construct the Google Matrix for this web, G. Use damping factor $p=0.85$.

$$
\text { i. } G=0.85 P_{p}+0.95\left(\begin{array}{ccc}
1 / 5 & \ldots & 1 / 5 \\
\vdots & \ddots & \vdots \\
1 / 5 & \cdots & 1 / 5
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
0.211 \\
0.109 \\
0.148 \\
0.148 \\
0.182
\end{array}\right)
$$

c. During an exam, to determine the page ranks of each page in the web a you would be given the steady-state vector G. Because you are not taking an exam right now, compute the steady-state vector and page ranks of each page on the web. You can use software.
Hint: For a web with only two pages that are linked to each other, we can compute the steady state using MATLAB or Octave using these commands

Pstar $=1 / 2[01 ; 10]$
$\mathrm{K}=1 / 2 *$ ones (2)
$\mathrm{G}={ }_{p} *$ Pstar $+(1-p) * K$
$G^{\uparrow}(100)$
There are many free online Octave compilers.
2. Suppose p and q are real numbers on the open interval (0,1), and

$$
A=\left(\begin{array}{cc}
p & 1-q \\
1-p & q
\end{array}\right)
$$

a. Is A stochastic? Is A regular?
i. $p=0.2, q=0.7$ (random \#s to solution)
ii. $\left(\begin{array}{ll}0.2 & 0.3 \\ 0.8 & 0.7\end{array}\right)$ all positive entries; hence, A is stochastic and regular
b. By inspection, what is one eigenvalue of A ?
i. Since A is stochastic and regular that means it has a unique steady-state which implies $\lambda=1$
c. Compute the steady-state vector of A.

$$
\begin{aligned}
& \left.\qquad \begin{array}{ll}
\text { i. }\left(\begin{array}{ll}
A-I & \mid
\end{array}\right. & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
p-1 & 1-q & 0 \\
1-p & q-1 & 0
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 1-q / p-1 \\
0 & 0
\end{array}\right. \\
& \Rightarrow t\left[\begin{array}{c}
-1-q / p-1 \\
1
\end{array}\right] \sim\left[\begin{array}{c}
(-1+q) /(-2+q+p) \\
(p-1) /(-2+q+p)
\end{array}\right] \\
& \text { d. Compute the limit } \lim _{n \rightarrow \infty} A^{n}
\end{aligned}
$$

$$
\text { i. } \rightarrow\left[\begin{array}{ll}
\vec{v} & \vec{v}
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
(-1+q) /(q+p-2) & (-1+q) /(q+p-2) \\
(p-1) /(q-1) /(q+p-2)
\end{array}\right]
$$

$$
A=\left(\begin{array}{ccc}
.5 & .25 & .25 \\
.25 & .5 & .25 \\
.25 & .25 & .5
\end{array}\right), \overrightarrow{x_{0}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

The eigenvalues of A are 1 and $1 / 4$. Analyze the long-term behavior of the system. In other words, determine what $\overrightarrow{x_{k}}$ tends to as $k \rightarrow \infty$

$$
\begin{aligned}
& x_{k}=A^{k} x_{0} \\
& \Delta-D D D^{-1}
\end{aligned}
$$

$$
A=P D P^{-1}
$$

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right], \quad D=\left[\begin{array}{ccc}
1 & & \\
& 1 / 4 & \\
& & 1 / 4
\end{array}\right]
$$

$$
P^{-1}=1 / 3\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

$$
\left.x_{k}=A^{k} x_{0}=x x_{k}=A^{k} x_{0}^{k}\right) x_{0}=P D^{k} P^{-1} x_{0} \rightarrow P\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] P^{-1} x_{0}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

Notes:
Construct the Google Matrix for the web below. Which page do you think will have the highest PageRank? How would your result depend on the damping factor p ? Use software to explore the questions.

1. Compute: P

$$
G=0.85 P_{*}+0.15\left(\begin{array}{l}
1 / 4 \\
1 / 4 \ldots \\
1 / 4 \\
1 / 4
\end{array}\right)
$$

2. Use a computer to find \vec{q} for G

$$
P_{*}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 / 4 \\
0 & 0 & 0 & 1 / 4 \\
& 1 & 0 & 1 / 4 \\
0 & 0 & 1 & 1 / 4
\end{array}\right)
$$

2. Columns of G^{n}

$$
\vec{q} \cong\left(\begin{array}{l}
0.13 \\
0.13 \\
0.34 \\
0.41
\end{array}\right), \vec{q} \cong \frac{1}{1599}\left(\begin{array}{l}
200 \\
200 \\
540 \\
654
\end{array}\right)
$$

PageRank

1. D
1) C
2) A and B

Section 6.1: Inner Product, Length, and Orthogonality

Remark
$\overrightarrow{(A B)_{i, j}}=\overrightarrow{\operatorname{Row}}(A, i) \cdot \overrightarrow{\operatorname{Col}}(B, j)$

The Dot Product

The dot product between two vectors, \vec{u} and \vec{v} in \mathbb{R}^{n}, is defined as

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Ex.1: For what values of k is $\vec{u} \cdot \vec{v}=0$?

$$
\vec{u}=\left(\begin{array}{c}
-1 \\
3 \\
k \\
2
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right)
$$

$\vec{u} \cdot \vec{v}=-4+6+k-6=k-4$
$\vec{u} \cdot \vec{v}=0 \Leftrightarrow k=4$

Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits linear properties.
Theorem (Basic Identities of Dot Product)
Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors in \mathbb{R}^{n}, and $c \in \mathbb{R}$.

1) (Symmetry) $\vec{u} \cdot \vec{w}=\vec{w} \cdot \vec{u}$
2) (Linear in each vector) $(\vec{v}+\vec{w}) \cdot \vec{u}=\vec{v} \cdot \vec{u}+\vec{w} \cdot \vec{u}$
3) (Scalars) $(c \vec{u}) \cdot \vec{w}=c(\vec{u} \cdot \vec{w})$
4) (Positivity) $\vec{u} \cdot \vec{u} \geq 0$, and the dot product equals 0 iff $\vec{u}=\overrightarrow{0}$

$$
\vec{u} \cdot \vec{u}=u_{1}{ }^{2}+u_{2}^{2}+\cdots+u_{n}{ }^{2}
$$

The Length of a Vector

Definition
The length of a vector $\vec{u} \in \mathbb{R}^{n}$ il
$\vec{u} \| \sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}{ }^{2}+u_{2}{ }^{2}+\cdots+u_{n}{ }^{2}}$
Ex. The length of $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ is $\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14}$
Ex.
Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^{n} with $\vec{u} \# 5$, 神 $\sqrt{3}$, and $\vec{u} \cdot \vec{v}=-1$.
Compute the value oful| $+\vec{v} \|$
$\vec{u}\left\|+\vec{v}^{2}\right\|=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})$

$$
\begin{aligned}
& =\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} \\
& =\vec{v}\|+2 \vec{u} \cdot \vec{v}+\vec{v}\| \\
& =25-2+3 \\
& =26 \\
& \rightarrow \vec{u}\left\|+\vec{v}_{n}\right\|=\sqrt{26}
\end{aligned}
$$

chin\# $\sqrt{c^{2} u_{1}{ }^{2}+\cdots+c^{2} u_{n}{ }^{2}}=\sqrt{c^{2}} \sqrt{u_{1}{ }^{2}+\cdots+u_{n}{ }^{2}}=\mid c$ 께| \mid

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c \vec{v}$ is
$c|\vec{b} \#| c|\vec{y}|$
Definition
If $\vec{v} \in \mathbb{R}^{n}$ has length one, we say it is a unit vector
For example, each of the following vectors are until vectors.

$$
\overrightarrow{e_{1}}=\binom{1}{0^{\prime}} \quad \vec{y}=\frac{1}{\sqrt{5}}\binom{1}{2} \quad \vec{v}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

Distance in \mathbb{R}^{n}

Definition
For $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is given by the formula

$$
\vec{u} \mid-\vec{v} \|
$$

Example: Compute the distance from $\vec{u}=\binom{7}{1}$ nd $\vec{v}=\binom{3}{2}$

$$
\text { Here: } \vec{u}-\vec{v}=\binom{4}{-1}
$$

$\vec{u} \mid-\vec{v} \# \sqrt{16+1}=\sqrt{17}$

Orthogonality

Definition (Orthogonal Vectors)
Two vectors \vec{u} and \vec{w} ar e orthogonal if $\vec{u} \cdot \vec{w}=0$. This is equivalent to:
$\vec{v} \mid-\vec{w}^{2}\left\|=\vec{v}_{n}\right\|+\vec{v}^{2} \|$
Note: The zero vector in \mathbb{R}^{n} is orthogonal to every vector in \mathbb{R}^{n}. But we usually only mean non-zero vectors.

Ex. 2
Sketch the subspace spanned by the set of all vectors \vec{v} that are orthogonal to $\vec{v}=\binom{3}{2}$

$\vec{u}=\binom{x_{1}}{x_{2}}$
$\vec{u} \cdot \vec{v}=0 \Leftrightarrow 3 x_{1}+2 x_{2}=0$
さ
$\vec{v}+\vec{u}=0 \Leftrightarrow \vec{u} \in \operatorname{Null}(\vec{v})$

Orthogonal Compliments

Definitions
Let W be a subspace of \mathbb{R}^{n}. Vector $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to W if \vec{z} is orthogonal to every vector in W. He set of all vectors orthogonal to W is a subspace, the orthogonal compliment of W, or W^{T} or ' W prep.'

$$
W^{T}=\left\{\vec{z} \in \mathbb{R}^{n}: \vec{z} \cdot \vec{w}=0 \forall \vec{w} \in W\right\}
$$

Ex. 3

Example: suppose $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$

- Col A is the span of $\overrightarrow{a_{1}}=\binom{1}{2}$
- $\operatorname{Col} A^{T}$ is the span of $\vec{z}=\binom{2}{-1}$

Sketch Null A and Null A^{T} on the grid below.
$x_{2} \quad$ Null A^{T}

$\operatorname{Null}(A)=\operatorname{Span}\binom{3}{-1}$
$\operatorname{Null}(A)^{\perp}=\operatorname{Span}\binom{1}{3}$

Ex. 4
Line L is a subspace of \mathbb{R}^{3} spanned by $\vec{v}=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$. Then the space L^{\perp} is a place. Construct an equation of the
plane L^{\perp}.
$\vec{u}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
$\vec{u} \cdot \vec{v}=0 \Leftrightarrow x_{1}-x_{2}+2 x_{3}=0$
Row A
Definition
Row A is a the space spanned by the rows of matrix A.
We can show that

- $\operatorname{dimR}(\operatorname{ow}(A) \neq \operatorname{din} C(01(A))$
- A basis for Row A is a pivot rows of A

Note that $\operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)$, but in general Row A and $\operatorname{Col} A$ are not related to each other
Ex. 5
Describe the Null (A) is terms of an orthogonal subspace.
A vector \vec{x} is in Null A if and only if

1. $A \vec{x}=\overrightarrow{0}$
2. This means that \vec{x} is orthogonal to each row of A
3. Row A is orthogonal to Null A
4. The dimension of Row A plus the dimension of Null A equals n (\# columns)

Rank Theorem
$\operatorname{dinc}(01(A))^{\operatorname{lin}} \operatorname{din}(\operatorname{ull}(A) \neq n$
$\operatorname{dinn}(\operatorname{low}(A))$

Theorem (The Four Subspaces)

For any $A \in \mathbb{R}^{m \times n}$, the orthogonal complement of Row A is Null A, and the orthogonal complement of $\operatorname{Col} A$ is Null A^{T}
We know: Row $(A) \perp \operatorname{Null}(A)$ in \mathbb{R}^{n}
Apply to $A^{T}: \underbrace{\text { Row }\left(A^{T}\right)}_{\text {Col A }} \perp \operatorname{Null}\left(A^{T}\right)$ in \mathbb{R}^{n}

Notes:

Angles

Theorem

$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$. Thus, if $\vec{a} \cdot \vec{b}=0$, then:

- \vec{a} and/or \vec{b} are 0 vectors, or \vec{a} and \vec{b} are orthogonal vectors.

For example, consider the vectors below.

"easy case": \vec{b} is in the direction of the x_{1}-axis

$$
a=\text { =14los } \theta \text { ällin } \theta \text {) }
$$

$$
b=(\|\vec{b}\|, 0)
$$

Thus: $\vec{a} \cdot \vec{b}=\vec{a}$ 解 $h o s \theta+0$

Section 6.2: Orthogonal Sets

Orthogonal Vector Sets

Definition
A set of vectors $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ are an orthogonal set of vectors if for each $j \neq k, \overrightarrow{u_{j}} \perp \overrightarrow{u_{k}}$.
Ex: Fill in the missing entries to make $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right\}$ and orthogonal set of vectors.

$$
\begin{aligned}
& \overrightarrow{u_{1}}=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right], \quad \overrightarrow{u_{2}}=\left[\begin{array}{c}
-2 \\
0 \\
8
\end{array}\right], \quad \overrightarrow{u_{3}}=\left[\begin{array}{c}
0 \\
\boxed{*} \\
0
\end{array}\right] \\
& \overrightarrow{u_{2}}=\left(\begin{array}{c}
-2 \\
0 \\
x
\end{array}\right) \rightarrow \overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}}=-8+x \\
& \overrightarrow{u_{3}}=\left(\begin{array}{l}
0 \\
x \\
z
\end{array}\right) \rightarrow \frac{\overrightarrow{u_{1}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{3}}=2} \overrightarrow{u_{3}}=8 z \\
& \rightarrow y \text { is free. }
\end{aligned}
$$

Linear Independence

Let $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ be an orthogonal set of vectors. Then, for scalars $c_{1}, \ldots c_{p}$.
$c_{\|} \overrightarrow{u_{1}}+\cdots+c_{p}{\overrightarrow{u_{p}}}_{2} \|=c_{1}^{2}{\overrightarrow{u_{1}}}^{2}+\cdots+c_{p}{\overrightarrow{u_{p}}}^{2}$.
In particular, if all the vectors $\overrightarrow{u_{r}}$ are non-zero, the set of vectors $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ are linearly independent.

$$
\begin{gathered}
c\left\|\overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}\right\|=\left(\sum_{i=1}^{p} c_{i} \overrightarrow{u_{i}}\right)\left(\sum_{i=1}^{p} c_{i} \overrightarrow{u_{i}}\right) \\
\text { But } \overrightarrow{u_{i}} \cdot \overrightarrow{u_{j}}=\left\{\begin{array}{cc}
A_{1}^{2} \| & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
\end{gathered}
$$

$\rightarrow\left\|\sum_{i=1}^{p} c_{i} \overrightarrow{u_{i}}\right\|^{2}=c_{1} \overrightarrow{u\left\|^{2}\right\|+\cdots+c_{p} \overrightarrow{u_{2}^{2}} \|}$
If none of the vector $\overrightarrow{u_{1}}$ is $\overrightarrow{0}$:

$$
\text { Assume: } c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}=\overrightarrow{0}
$$

We have:ch $\overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}} \|=c_{1}{ }^{2}{\overrightarrow{u_{1}}}^{2}+\cdots+c_{p}{ }^{2}{\overrightarrow{u_{p}}}^{2}$

$$
\rightarrow c_{1}=c_{2}=\cdots=c_{p}=0
$$

$\rightarrow \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}$ are linearly independent

Orthogonal Bases

Basis $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ of W
$\vec{w} \in W: \vec{w}=c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}$

$$
\text { Thene } \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\vec{w}
$$

Theorem (Expansion in Orthogonal Basis)
Let $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then, for any vector $\vec{w} \in W$.

$$
\vec{w}=c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}} .
$$

Above, the scalars are $c_{q}=\frac{\vec{w} \cdot \overrightarrow{u_{q}}}{\overrightarrow{u_{q}} \cdot \bar{u}_{q}}$.
For example, any vector $\vec{w} \in \mathbb{R}^{3}$ can be written as a linear combination of $\left\{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right\}$, or some orthogonal basis $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right\}$.
$\vec{w}=c_{1} \overrightarrow{u_{1}}+\cdots+c_{p} \overrightarrow{u_{p}}$
$1 \leq q \leq p: \vec{w} \cdot \overrightarrow{u_{q}}=c_{1} \overrightarrow{u_{1}} \overrightarrow{u_{q}}+\cdots+c_{p} \overrightarrow{u_{p}} \overrightarrow{u_{q}}=c_{q} \overrightarrow{u_{q}} \cdot \overrightarrow{u_{q}}=\widehat{\overrightarrow{\frac{\vec{w}}{\overrightarrow{u_{q}} \cdot \overrightarrow{u_{q}}}}, \overrightarrow{\vec{u}_{q}}}$
Ex.
$\vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), \quad \vec{s}=\left(\begin{array}{c}3 \\ -4 \\ 1\end{array}\right)$
Let W be the subspace of \mathbb{R}^{3} that is orthogonal to \vec{x}.
a) Check that an orthogonal basis for W is given by \vec{u} and \vec{x}
$\vec{u} \cdot \vec{x}=1-2+1=0: \vec{u} \in \vec{W}$
$\vec{v} \cdot \vec{x}=-1+0+1=0: \vec{v} \in \vec{W}$
$\vec{u} \cdot \vec{v}=-1+0+1=0: \vec{u}, \vec{v}$ linearly independent
$\rightarrow\{\vec{u}, \vec{v}\}$ isan orthogonal basis of W.
b) Compute the expansion \vec{s} in basis W.
$\vec{s}=\left(\begin{array}{c}3 \\ -4 \\ 1\end{array}\right)$
$\vec{s} \cdot \vec{x}=3-4+1=0: \vec{s} \in \vec{W}$
$\rightarrow \vec{s}=c_{1} \vec{u}+c_{2} \vec{v}$

$$
\begin{aligned}
& c_{1}=\frac{\vec{s} \cdot \overrightarrow{\vec{u}}}{\overrightarrow{\vec{u}} \cdot \overrightarrow{\vec{u}}}=\frac{3+8+1}{1+4+1}=\frac{12}{6}=2 \\
& c_{2}=\frac{\vec{s} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}=\frac{-3+1}{1+1}=\frac{-2}{2}=-1
\end{aligned}
$$

Projections

Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The orthogonal prokection of \vec{v} onto the direction of \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v}.
$\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$

The vector $\vec{w}=\vec{v}-\operatorname{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u}, so that
$\vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\vec{w}$
$\vec{u}^{2}\left\|=\operatorname{rfoj}_{\vec{u}} \vec{v}^{\frac{2}{v}}\right\|+\vec{v}^{2} \|$

$\operatorname{proj}_{\vec{u}} \vec{v}=\operatorname{Span}\{\vec{u}\}$
$\rightarrow \operatorname{proj}_{\vec{u}} \vec{v}=k \vec{u}, k \in \mathbb{R}$
$\vec{u} \cdot \vec{v}=\vec{u} \cdot\left(\operatorname{proj}_{\vec{u}} \vec{v}+\vec{w}\right)$
$=k \vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{w}$
$\rightarrow \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$
Ex.
Let L be spanned by $\vec{u}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$

1. Calculate the projection of $\vec{y}=(-3,5,6,-4)$ onto line L.
$\operatorname{proj}_{\vec{u}} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{-3+5+6-4}{1+1+1} \vec{u}=\vec{u}$
2. How close is \vec{y} to the line L ?

멨|t $\operatorname{proj}_{\vec{u}} \vec{x} \# \vec{y}|-\vec{u} \#|\left(\begin{array}{c}-4 \\ 4 \\ 5 \\ -5\end{array}\right) \|=\sqrt{16+16+25+25}=\sqrt{82}$

Definition

Definition (Orthonormal Basis)
An orthonormal basis for a subspace W is an orthogonal basis $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right\}$ in which every vector $\overrightarrow{u_{q}}$ has unit length. In this case, for each $\vec{w} \in W$.

$$
\begin{aligned}
& \left.\vec{w}=\left(\vec{w} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}+\cdots+\overrightarrow{u_{n}} \cdot \overrightarrow{u_{p}}\right) \\
& \vec{w} \# \# \sqrt{\left(\vec{w} \cdot \overrightarrow{u_{1}}\right)^{2}+\cdots+\overrightarrow{u(~}\left(\overrightarrow{u_{p}}\right)} \\
& \overrightarrow{c_{q}}=\frac{\vec{w} \cdot \overrightarrow{u_{q}}}{\overrightarrow{u_{q}} \cdot \overrightarrow{u_{q}}}=\vec{w} \cdot \overrightarrow{u_{q}}
\end{aligned}
$$

Orthonormal (orthogonal + normal)

Def. The dot product of \vec{u}, \vec{v} is $\vec{u} \cdot \vec{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}$
Ex. $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]=1(-3)+2(1)+1(0)$
Def. \vec{u} is orthogonal to \vec{v} if $\vec{u} \cdot \vec{v}=0$
Def. The length \vec{u} is $\vec{u} \| \sqrt{\vec{u} \cdot \vec{u}}$
Note: $\vec{u} \cdot \vec{u}=u_{1}{ }^{2}+\cdots+u_{n}{ }^{2}$
Def. $\left\{u_{1}, \ldots, u_{n}\right\}$ is orthogonal il
$u_{i} \cdot u_{j}=0$ for all $i \neq j$
ul\# 1 for all i
Ex. $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ orthonormal
Prop. The projection of \vec{v} onto \vec{u} is $\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$
The closest vector to \vec{v} in $\operatorname{Span}\{u\}$ is $\operatorname{proj}_{\vec{u}} \vec{v}$

Worksheet 6.1, Inner Product, Length, and Orthogonality

Worksheet Exercises

1. Fill in the blanks.
a. The distance between the vector $\vec{u}=\binom{2}{3}$ nd the line spanned by $\left.\vec{w}=\binom{1}{0_{0}} \operatorname{proj}_{\vec{w}} \vec{u}=\frac{\vec{u} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}=\frac{2}{1}\binom{1}{0}\binom{2}{0}_{2}^{2} \begin{array}{l}\end{array}\right)\binom{2}{0}\binom{0}{3}\left(\binom{9}{3}=\right.$ $\sqrt{(0)^{2}+(3)^{2}}=3$
b. If W is the plane spanned by the vectors $\vec{u}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$, a basis of W^{\perp} is given by $\vec{w}=\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right)$.

$$
\vec{w}=\operatorname{Col}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right], \vec{w}^{\perp}=\operatorname{Null}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

c. If $V=\left\{\vec{x} \in \mathbb{R}^{3} \mid x_{1}+x_{2}=x_{3}\right\}$, then $\operatorname{dim} V=2$, and $\operatorname{dim} V^{\perp}=1$.
$V=\operatorname{Null}\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]$
$\Rightarrow \operatorname{dim}(V)=2$
$\Rightarrow \operatorname{dim}\left(V^{\perp}\right)=\operatorname{dim}\left(\operatorname{Row}\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\right)=1$
$\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$
2. W is the set of all vectors of the form $\left(\begin{array}{c}x \\ y \\ x+y\end{array}\right)$. Which of the vectors are in W^{\perp} ?

$$
\vec{u}=\left(\begin{array}{c}
8 \\
-5 \\
8
\end{array}\right), \vec{v}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), \quad \vec{w}=\left(\begin{array}{c}
3 \\
3 \\
-3
\end{array}\right)
$$

3. True or False
a. If $\vec{x} \in \operatorname{Null}(A)$, then \vec{x} is orthogonal to the rows of matrix A.
i. True
b. If \vec{u} and \vec{v} are non-zero orthogonal vectors, then they are linearly independent.
i. True

Worksheet 6.2, Orthogonal Sets

Worksheet Exercises

1. Indicate whether the statements are true or false
a. If the columns of an $n \times n$ matrix A are orthonormal, then the linear mapping $\vec{x} \rightarrow A \vec{x}$ preserves lengths.
i. True
b. If P is a stochastic matrix, then the columns of P have unit length.
i. False
2. Write \vec{y} as the sum of a vector parallel to \vec{u} and a vector perpendicular to \vec{u}.

$$
\vec{y}=\left(\begin{array}{l}
-1 \\
-5 \\
10
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right)
$$

3. Find the coordinates for \vec{v} in the subspace spanned by the orthogonal vectors $\overrightarrow{u_{1}}$ and $\overrightarrow{u_{2}}$.

$$
\begin{aligned}
& \vec{v}=\left(\begin{array}{c}
0 \\
-5 \\
-3
\end{array}\right), \overrightarrow{u_{1}}=\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{c}
6 \\
-7 \\
-10
\end{array}\right) \\
& \operatorname{proj}_{\overrightarrow{u_{1}}} \vec{v}=\vec{v} \cdot \overrightarrow{u_{1}} \\
& \overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}} \\
& \overrightarrow{u_{1}}
\end{aligned} \frac{4}{9} u_{1} .
$$

4. Give examples of the following.
a. A matrix, A, in RREF, such that $\left.\operatorname{dim}\left(\operatorname{Row}(A)^{\perp}\right)\right) 1$ and $\operatorname{dim}\left(\left(01(A)^{\perp}\right) 2\right.$.
$\operatorname{dim}\left(k\left(o w(A)^{\perp}\right)\right) 1 \Rightarrow A$ has 1 free variable
$\operatorname{dim}\left(\left(01(A)^{\perp}\right)\right) 2 \Rightarrow A^{\perp}$ has 2 free variables
$A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$
b. Two linearly independent vectors \mathbb{R}^{3}, \vec{u} and \vec{v}, such that $\vec{u} \cdot \vec{x}=\vec{v} \cdot \vec{x}=0$, where $\vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

$$
\vec{u}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

c. A 3×3 matrix in RREF, A, such thati $\left(\operatorname{ull}(A)^{\perp}\right)$ is spanned by $\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$.
$A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
d. A non-zero vector, \vec{w}, whose projection $\operatorname{Col}(A)$ is \vec{w}, where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)$.
$\vec{w}=\binom{$ ए }{$\square}$

Lecture 30

Wednesday, November 3, 2021 3:35 PM

Notes:

Example

The subspace W is a subspace of \mathbb{R}^{3} perpendicular to $x=(1,1,1)$. Calculate the missing coefficients in the orthonormal basis for W.

$$
u=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad v=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

$\vec{v}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \quad \begin{aligned} & \vec{v} \cdot \vec{u}=0 \Leftrightarrow x_{1}=x_{3} \\ & \vec{v} \cdot \vec{x}=0 \Leftrightarrow x_{1}+x_{2}+x_{3}=0\end{aligned}$

Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are orthonormal
Theorem
An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I_{n}$.
Can U have orthonormal columns if $n>m$? NO (needs to be linearly independent)

Proof:

U matrix with columns $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}$

$$
U^{T} U=\left(\begin{array}{cccc}
\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}} & \overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}} & \cdots & \overrightarrow{u_{1}} \cdot \overrightarrow{u_{n}} \\
& \overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}} & \cdots & \overrightarrow{u_{2}} \cdot \overrightarrow{u_{n}} \\
& & \ddots & \vdots \\
& & & \overrightarrow{u_{n}} \cdot \overrightarrow{u_{n}}
\end{array}\right)
$$

$U^{T} U=I_{n} \Leftrightarrow\left\{\begin{array}{l}\overrightarrow{u_{i}} \cdot \overrightarrow{u_{i}}=1 \text { for } 1 \leq i \leq n \\ \overrightarrow{u_{i}} \cdot \overrightarrow{u_{k}}=0 \text { for } \mathrm{i} \neq k\end{array}\right.$
\rightarrow If U is square $U^{-1}=U^{T}$

Theorem

Assume $m \times n$ matrix U has orthonormal columns. Then,

1. (Preserves length) $U \vec{x} \# \vec{x}$
2. (Preserves angle) $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$
3. (Preserves orthogonality) $U \vec{x} \cdot U \vec{y}=0 \Leftrightarrow \vec{x} \cdot \vec{y}=0$

Proof:

$$
\text { 2. }(U \vec{x}) \cdot(U \vec{y})=(U \vec{x})^{T} \cdot(U \vec{y})=\vec{x}^{T} \underbrace{U^{T} U}_{I_{n}} \vec{y}=\vec{x}^{T} \vec{y}=\vec{x} \cdot \vec{y}
$$

From 2 we have,

$$
U\left\|_{\vec{x}}^{\frac{3}{x}}\right\|=U \vec{x} \cdot U \vec{x}=\vec{x} \cdot \vec{x}=\vec{x} \|
$$

Example
Compute the length of the vector below.
$\left[\begin{array}{cc}1 / 2 & 2 / \sqrt{14} \\ 1 / 2 & 1 / \sqrt{14} \\ 1 / 2 & -3 / \sqrt{14} \\ 1 / 2 & 0\end{array}\right]\left[\begin{array}{l}\sqrt{2} \\ -3\end{array}\right]$
$\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$ and $\left(\begin{array}{c}2 / \sqrt{14} \\ 1 / \sqrt{14} \\ -3 / \sqrt{14} \\ 0\end{array}\right)$ are orthonormal
$\rightarrow \left\lvert\,\left[\begin{array}{cc}1 / 2 & 2 / \sqrt{14} \\ 1 / 2 & 1 / \sqrt{14} \\ 1 / 2 & -3 / \sqrt{14} \\ 1 / 2 & 0\end{array}\right]\left[\begin{array}{l}\sqrt{2} \\ -3\end{array}\right]\|=\|\left[\begin{array}{l}\sqrt{2} \\ -3\end{array}\right]\right. \|=\sqrt{11}$

Section 6.3: Orthogonal Projections

Ex. 1
Let $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{5}}$ be an orthonormal basis for \mathbb{R}^{5}. Let $W=\operatorname{Span}\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right)$. For a vector $\vec{y} \in \mathbb{R}^{5}$, write $\vec{y}=\hat{y}+w^{\perp}$, where $\hat{y} \in$ W and $w^{\perp} \in W^{T}$.

$$
\begin{aligned}
& \vec{y} \in \mathbb{R}^{5} \text { and }\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{5}}\right\} \text { basis of } \mathbb{R}^{5} \\
& \vec{y}=c_{1} \overrightarrow{u_{1}}+c_{2} \overrightarrow{u_{2}}+c_{3} \overrightarrow{u_{3}}+c_{4} \overrightarrow{u_{4}}+c_{5} \overrightarrow{u_{5}} \\
& c_{q}=\vec{y} \cdot \overrightarrow{u_{q}} \text { for } 1 \leq q \leq 5 \\
& \vec{y}=\underbrace{c_{1} \overrightarrow{u_{1}}+c_{2} \overrightarrow{u_{2}}}_{\epsilon W}+\underbrace{c_{3} \overrightarrow{u_{3}}+c_{4} \overrightarrow{u_{4}}+c_{5} \overrightarrow{u_{5}}}_{\epsilon W^{T}} \\
& \vec{y}=\hat{y}+w^{T} \\
& \hat{y}=c_{1} \overrightarrow{u_{1}}+c_{2} \overrightarrow{u_{2}} \in W \\
& w^{T}=c_{3} \overrightarrow{u_{3}}+c_{4} \overrightarrow{u_{4}}+c_{5} \overrightarrow{u_{5}} \in w^{T}
\end{aligned}
$$

Remark:
If $\vec{y} \in W: \vec{y}=\hat{y}, w^{\perp}=\overrightarrow{0}$

If $\vec{y} \in w^{\perp}: \hat{y}=\overrightarrow{0}, \vec{y}=w^{\perp}$

Orthogonal Decomposition Theorem

Theorem
Let W be a subspace of \mathbb{R}^{n}. Then, each vector $\vec{y} \in \mathbb{R}^{n}$ has the unique decomposition

$$
\vec{y}=\hat{y}+w^{\perp}, \hat{y} \in W, w^{\perp} \in W^{\perp}
$$

And, if $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}$ is any orthogonal basis for W.

$$
\hat{y}=\frac{\vec{y} \cdot \stackrel{\rightharpoonup}{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} \overrightarrow{u_{1}}+\cdots+\frac{\vec{y} \cdot \overrightarrow{u_{p}}}{\overrightarrow{u_{p}} \cdot \overrightarrow{u_{p}}} \overrightarrow{u_{p}}
$$

We say that \hat{y} is the orthogonal projection of \vec{y} onto W.

Explanation

We can write

$$
\left.\hat{y}=\sum_{i=1}^{P} \frac{\vec{y} \cdot \overrightarrow{u_{i}} \cdot \overrightarrow{u_{i}}}{\overline{u_{i}}} \in W=\operatorname{Span} \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}}\right) \overrightarrow{u_{q}} \cdot \overrightarrow{u_{i}}=0 \Leftrightarrow i \neq q
$$

Then, $w^{\perp}=\vec{y}-\hat{y}$ because

$$
\begin{aligned}
& w^{\perp} \cdot \overrightarrow{u_{q}} \cdot(\vec{y}-\hat{y})=\overrightarrow{u_{q}} \cdot \vec{y}-\hat{y} \cdot\left(\sum_{i=1}^{P} \frac{\vec{y} \cdot \overrightarrow{u_{i}}}{\overrightarrow{u_{i}} \cdot \overrightarrow{u_{i}}} \overrightarrow{u_{i}}\right) \\
& \rightarrow w^{\perp} \text { is orthogonal to } \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{p}} \\
& \quad w^{\perp} \in W^{\perp}
\end{aligned}
$$

Ex.2a

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \overrightarrow{u_{1}}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Construct the decomposition $\vec{y}=\hat{y}+w^{\perp}$ where \hat{y} is the orthogonal projection of \vec{y} onto the subspace $W=$
Span $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right\}$.
$\hat{y}=\frac{\vec{y} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} \overrightarrow{u_{1}}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}} \overrightarrow{u_{2}}=\frac{8}{8} \overrightarrow{u_{1}}+\frac{3}{1} \overrightarrow{u_{2}}=\overrightarrow{u_{1}}+3 \overrightarrow{u_{2}} \in W=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$
$\rightarrow w^{\perp}=\vec{y}-\hat{y}=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ -2 \\ 0\end{array}\right)$
Check: $w^{\perp} \cdot \overrightarrow{u_{1}}=w^{\perp} \cdot \overrightarrow{u_{2}}=0 \in W^{\perp}$

Best Approximation Theorem

Theorem
Let W be a subspace of $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{n}$, and \hat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{w} \neq \vec{y} \in W$, we have $\vec{y}\|-\hat{y} \sharp \vec{y} \mid-\vec{w}\|$
That is, \hat{y} is the unique vector in W that is closest to \vec{y}.

Proof

The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y}
$\vec{v} \in W \quad \vec{y}-\hat{y}=w^{\perp} \in W^{\perp}$
$\vec{v} \neq \hat{y} \quad \vec{v}-\hat{y} \in W$
Pythagorean Theorem:
$\vec{y} \mid-\vec{v}^{2}\|=\vec{y}\|-\hat{y}^{2}\|+\underbrace{\vec{v}}_{\neq 0}\|$
$\vec{y}\left\|-\hat{v}^{2}\right\|>\vec{y}\left\|-y^{2}\right\| \Rightarrow \vec{y}\|-\vec{v} \# \vec{y}\|-\hat{y} \|$
Ex.2b

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \overrightarrow{u_{1}}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

What is the distance between \vec{y} and subspace $W=\operatorname{Span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right\}$? Note that these are the same vectors in Ex.2a

$A \vec{x}=\vec{b}$ is consistent iff $\vec{b} \in \operatorname{Col}(A)$

Gram-Schmidt:

- Process for converting basis to an orthonormal one
- Idea: successively subtract projection of current vector onto previous ones
- Start with basis $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$

$$
\begin{aligned}
& \overrightarrow{v_{1}}=\overrightarrow{x_{1}} \\
& \overrightarrow{v_{2}}=\overrightarrow{x_{2}}-\frac{\overrightarrow{x_{2}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}} \\
& \overrightarrow{v_{3}}=\overrightarrow{x_{3}}-\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}}-\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{2}}}{\overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}} \overrightarrow{v_{2}} \\
& \vdots \\
& \overrightarrow{v_{n}}=\overrightarrow{x_{n}}-\frac{\overrightarrow{x_{n}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}}-\cdots-\frac{\overrightarrow{x_{n}} \cdot \overrightarrow{v_{p-1}}}{\overrightarrow{v_{p-1}} \cdot \overrightarrow{v_{p-1}}} \overrightarrow{v_{p-1}}
\end{aligned}
$$

Worksheet 6.3 and 6.4: Orthogonal Projections, The Gram-Schmidt Process

1. $\vec{y}=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right), \overrightarrow{u_{1}}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
a. Determine whether $\overrightarrow{u_{1}}$ and $\overrightarrow{u_{2}}$
i. Are linearly independent 1) True
ii. Are mutually orthogonal
1) True
iii. Are orthonormal
2) False
iv. Span \mathbb{R}^{3}
3) False
b. Is \vec{y} in $W=\operatorname{Span}\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right)$
i. False
c. Compute the vector, $\hat{y} \in W$, that most closely appromixmates \vec{y}.
i. $\hat{y}=\operatorname{proj}_{\vec{w}} \vec{y}=\operatorname{proj}_{\overrightarrow{u_{1}}} \vec{y}+\operatorname{proj}_{\overrightarrow{u_{2}}} \vec{y}=\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)$
d. Construct a vector, \vec{z}, that is in W^{\perp}
i. $\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right)=\vec{y}-\hat{y}$
2. Compute the $Q R$ decomposition of $A=\left(\begin{array}{cc}1 & 5 \\ 3 & 1 \\ -2 & 4\end{array}\right)$
a. $A=Q R, Q$ has orthonomal columns; R upper triangular
b. To find Q, run G-S on columns of A to get $Q=\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$
c. $\overrightarrow{v_{1}}=\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right) \Rightarrow \frac{1}{\sqrt{14}}\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$
d. $\overrightarrow{v_{2}}=\left(\begin{array}{l}5 \\ 1 \\ 4\end{array}\right)-\frac{0}{14}\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{l}5 \\ 1 \\ 4\end{array}\right) \Rightarrow \frac{1}{\sqrt{42}}\left(\begin{array}{l}5 \\ 1 \\ 4\end{array}\right)$
e. $Q=\left(\begin{array}{cc}1 / \sqrt{14} & 5 / \sqrt{42} \\ 3 / \sqrt{14} & 1 / \sqrt{42} \\ -2 / \sqrt{14} & 4 / \sqrt{42}\end{array}\right)$
f. $\quad R=Q^{T} A=\left(\begin{array}{ccc}1 / \sqrt{14} & 3 / \sqrt{14} & -2 / \sqrt{14} \\ 5 / \sqrt{42} & 1 / \sqrt{42} & 4 / \sqrt{42}\end{array}\right)\left(\begin{array}{cc}1 & 5 \\ 3 & 1 \\ -2 & 4\end{array}\right)=\left(\begin{array}{cc}14 / \sqrt{14} & 0 \\ 0 & 5 / \sqrt{10}\end{array}\right)$
3. $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is an orthogonal basis for subspace V. Classify each set as a bassi for V, an orthogonal basis for V, or not a basis for V.
a. $\left\{3 \overrightarrow{v_{3}}, 2 \overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$
i. $\left(3 v_{3}\right) \cdot\left(2 v_{1}\right)=6(\underbrace{v_{3} \cdot v_{1}}_{=0} \mp 0$
ii. \Rightarrow Orthogonal basis
b. $\left\{\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right),\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right), \overrightarrow{v_{3}}\right\}$
i. $\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) \cdot\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right)=v_{1} \cdot v_{1}-v_{1} \cdot v_{2}+v_{2} \cdot v_{1}-v_{2} \cdot v_{2}=\left.\psi\right|_{1} ^{2}\|+\psi\|_{2}^{2} \| \neq 0$
ii. \Rightarrow Not necessarly an orthogonal basis
c. $\left\{\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right),\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right),\left(\overrightarrow{v_{3}}-\overrightarrow{v_{1}}\right)\right\}$
i. $\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) \cdot\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right)=v_{1} \cdot v_{1}-v_{1} \cdot v_{2}+v_{2} \cdot v_{1}-v_{2} \cdot v_{2}=\left.\psi\right|^{2}\|+v\|_{2}^{2} \| \neq 0$
ii. \Rightarrow Not necessarly an orthogonal basis
4. Indicate whether he statement are true or false.
a. If \vec{y} is in subspace W, the orthogonal projection of \vec{y} onto W is \vec{y}
i. True
b. If c is orthogonal to \vec{v} and \vec{w}, then \vec{x} is also orthogonal to $\vec{v}-\vec{w}$
i. True
5. If possible, give an example of:
a. Two linearly independent vectors that are orthogonal to $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
i. $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
b. A subspace of \mathbb{R}^{3}, S, such that $\operatorname{dim}\left(S^{\perp}\right)=2$
i. $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$
6. Written Explanation Exercise Let u_{1}, \ldots, u_{k} be an orthonormal family of vectors in \mathbb{R}^{n}. Explain why applying the Gram-Schmidt process to the pivotal columns of the $n \times(n+k)$ matrix $A=\left[u_{1} \ldots u_{k} e_{1} \ldots e_{n}\right]$ gives an orthonormal basis of \mathbb{R}^{n} that contains u_{1}, \ldots, u_{k}.

Lecture 31

Friday, November 5, 2021 3:30 PM

Notes:

Section 6.4: The Gram-Schmidt Process

Ex. 1
The vectors below span a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.

$$
\overrightarrow{x_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{x_{2}}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{x_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Idea: $W_{1}=\operatorname{Span}\left(\overrightarrow{x_{1}}\right)$
$W_{2}=\operatorname{Span}\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}\right)$
$W_{2}=\operatorname{Span}\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{3_{3}}\right)=W$

1. Orthogonal basis for W_{1}

$$
\rightarrow \overrightarrow{v_{1}}=\overrightarrow{x_{1}}
$$

2. Orthogonal basis for W_{2}

$$
\begin{aligned}
& \widetilde{v_{2}}=\overrightarrow{x_{2}}-\operatorname{proj}_{\overrightarrow{W_{1}}}^{\overrightarrow{x_{2}}} \\
& =\overrightarrow{x_{2}}-\frac{\overrightarrow{x_{2}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}} \in W_{2} \\
& =\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)-\frac{3}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Trick: take $\overrightarrow{v_{2}}=\left(\begin{array}{c}-3 \\ 1 \\ 1 \\ 1\end{array}\right)$
3. Orthogonal basis for W_{3}

$$
\widetilde{v_{3}}=\overrightarrow{x_{3}}-\operatorname{proj}_{W_{2}} \overrightarrow{x_{3}}=\overrightarrow{x_{3}}-\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}}-\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{2}}}{\overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}} \overrightarrow{v_{2}}=\frac{1}{3}\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right)
$$

Trick: take $\overrightarrow{v_{3}}=\left(\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right)$
$\rightarrow\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is an orthogonal basis of W

The Gram-Schmidt Process

Given a basis $\left\{\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{p}}\right\}$ for a subspace W of \mathbb{R}^{n}, iteratively define

$$
\begin{aligned}
& \overrightarrow{v_{1}}=\overrightarrow{x_{1}} \\
& \overrightarrow{v_{2}}=\overrightarrow{x_{2}}-\frac{\overrightarrow{x_{2}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{\frac{v_{1}}{}} \cdot \overrightarrow{\overrightarrow{v_{1}}} \overrightarrow{\overrightarrow{v_{3}}} \cdot \overrightarrow{v_{2}} \\
& \overrightarrow{v_{3}}=\overrightarrow{x_{3}}-\frac{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}}} \cdot \overrightarrow{\overrightarrow{v_{2}}} \\
& \vdots \\
& \overrightarrow{v_{n}}=\overrightarrow{x_{n}}-\frac{\overrightarrow{x_{n}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}}-\cdots-\frac{\overrightarrow{x_{n}} \cdot \overrightarrow{v_{p-1}}}{\overrightarrow{v_{p-1}} \cdot \overrightarrow{v_{p-1}}} \overrightarrow{v_{p-1}}
\end{aligned}
$$

Proof

\rightarrow See example 1

Geometric Interpretation

Suppose $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}$ are linearly independent vectors in \mathbb{R}^{3}. We wish to construct an orthogonal basis for the space that they span.

We construct vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$, which form our orthogonal basis. $W_{1}=\operatorname{Span}\left(\overrightarrow{v_{1}}\right), W_{2}=\operatorname{Span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right)$

Orthonormal Bases

Definition
A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.
Example
The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for W.

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]
$$

$\left\{\frac{1}{\sqrt{13}}\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right], \frac{1}{\sqrt{14}}\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]\right\}$ is an orthonormal basis for W

QR Factorization

Theorem
Any $m \times n$ matrix A with linearly independent columns has the $Q R$ factorization $A=Q R$
Where

1. Q is $m \times n$, its columns are an orthonormal basis for $\operatorname{Col}(A)$
2. R is $n \times n$, upper triangular, with positive entries on its diagonal, and the length of the $j^{t h}$ column of R is equal to the length of the $j^{\text {th }}$ column of A.

Proof

$A=\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right): \overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}$ linearly independent
$Q=\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right): \overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}$ orthonormal basis for $\operatorname{Col}(A)$
Obtained by Gram-Schmidt
Section 6.3: decomposition of a matrix in an orthonormal basis:
$\overrightarrow{a_{1}}=\left(\overrightarrow{a_{1}} \cdot \overrightarrow{q_{1}}\right) \cdot \overrightarrow{q_{1}}=\underbrace{r_{11}} \cdot \overrightarrow{q_{1}}$
$\overrightarrow{a_{2}}=\left(\overrightarrow{a_{2}} \cdot \overrightarrow{q_{1}}\right) \cdot \overrightarrow{q_{1}}+\left(\overrightarrow{a_{2}} \cdot \overrightarrow{q_{2}}\right) \cdot \overrightarrow{q_{2}}+=r_{12} \cdot \overrightarrow{q_{1}}+\underbrace{r_{22}}_{=0} \cdot \overrightarrow{q_{2}}$
: if $r_{22}<0$: change $\overrightarrow{q_{2}}$ change $-\overrightarrow{q_{2}}$ in Q
$\overrightarrow{a_{n}}=\left(\overrightarrow{a_{n}} \cdot \overrightarrow{q_{1}}\right) \cdot \overrightarrow{q_{1}}+\cdots+\left(\overrightarrow{a_{n}} \cdot \overrightarrow{q_{n}}\right) \cdot \overrightarrow{q_{n}}=r_{1 n} \cdot \overrightarrow{q_{1}}+\cdots+\underbrace{r_{n n}}_{\neq 0} \cdot \overrightarrow{q_{n}}$
Define: $R=\left(\begin{array}{cccc}r_{11} & r_{22} & \cdots & r_{1 n} \\ & \ddots & & \vdots \\ & (0) & \ddots & \vdots \\ & & & r_{n n}\end{array}\right)=\left(\overrightarrow{r_{1}} \ldots \overrightarrow{r_{n}}\right)$
$\begin{aligned} Q R= & \left(\begin{array}{ccc}\underbrace{Q \overrightarrow{r_{1}}} & \cdots & \underbrace{Q \overrightarrow{r_{n}}} \\ Q_{x}\left(\begin{array}{c}r_{11} \\ 0 \\ 0\end{array}\right)=r_{11} \cdot \overrightarrow{q_{1}}=\overrightarrow{q_{1}} & Q_{x}\left(\begin{array}{c}r_{1 n} \\ \vdots \\ r_{n n}\end{array}\right)=r_{1 n} \cdot \overrightarrow{q_{1}}+\cdots+r_{n n} \overrightarrow{a_{1}}\end{array}\right) \\ & \rightarrow A=Q R\end{aligned}$

Lecture 32

Monday, November 8, 2021 3:37 PM

Notes:

Ex.
Construct the $Q R$ decomposition for $A=\left[\begin{array}{cc}3 & -2 \\ 2 & 3 \\ 0 & 1\end{array}\right]=\underbrace{\left(\overrightarrow{a_{1}}\right.}_{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}}=0} \overrightarrow{\overrightarrow{a_{2}}})$
Why?: $A \vec{x}=\vec{b}$

$$
\begin{aligned}
& Q R \vec{x}=\vec{b} \\
& \underbrace{\rightarrow R \vec{x}=Q^{T} \vec{b}}_{\text {triangular system }}
\end{aligned}
$$

$Q=\left(\begin{array}{cc}3 / \sqrt{13} & -2 / \sqrt{14} \\ 2 / \sqrt{13} & 3 / \sqrt{14} \\ 0 & 1 / \sqrt{14}\end{array}\right)$
$R=Q^{T} A\left(\begin{array}{ccc}3 / \sqrt{13} & 2 / \sqrt{13} & 0 \\ -2 / \sqrt{14} & 3 / \sqrt{14} & 3 / \sqrt{14}\end{array}\right)\left(\begin{array}{cc}3 & -2 \\ 2 & 3 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}\sqrt{13} & 0 \\ 0 & \sqrt{14}\end{array}\right)$

Further Example

Construct the $Q R$ decomposition for $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & 2 \\ -1 & 1 & -3 \\ 1 & 0 & 1\end{array}\right]$

* orthogonal basis of $\operatorname{Col}(A): \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$

$$
\rightarrow Q=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{3} \\
0 & 0 & 1 / \sqrt{3} \\
-1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{3} \\
1 / \sqrt{3} & 2 / \sqrt{6} & 0
\end{array}\right)
$$

$$
\rightarrow R=Q^{T} \vec{b}=\left(\begin{array}{cccc}
1 / \sqrt{3} & 0 & -1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{6} & 0 & 1 / \sqrt{6} & 2 / \sqrt{6} \\
-1 / \sqrt{3} & 1 / \sqrt{3} & -1 / \sqrt{3} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 0 & 2 \\
-1 & 1 & -3 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{3} & -2 / \sqrt{3} & \sqrt{3} \\
0 & 2 / \sqrt{6} & 0 \\
0 & 0 & 6 / \sqrt{3}
\end{array}\right)
$$

Check. T] $\# \sqrt{\frac{4}{3}+\frac{4}{6}}=\sqrt{2}=$ वृह $\|$

$$
\vec{r} \# \# \sqrt{3+\frac{36}{3}}=\sqrt{15}=\vec{d} \|
$$

If you find Q and

$$
\begin{aligned}
& R=\left(\begin{array}{ccc}
1 & * & * \\
0 & -2 & * \\
0 & 0 & 3
\end{array}\right) \\
& A=Q R=\overbrace{\tilde{C}: C_{2} \leftarrow-C_{2}}^{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)} \overbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) R}^{\tilde{R}: R_{2} \leftarrow-R_{2}}
\end{aligned}
$$

Section 6.5: Least-Square Problems

Inconsistent Systems

Suppose we want to construct a line of the form

$$
y=m x+b
$$

that best fits the data below
$\cdot(3,3)$

$$
\cdot(2,2.5)
$$

$$
\begin{aligned}
& \overrightarrow{v_{1}}=\overrightarrow{a_{1}}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right) \\
& \overrightarrow{v_{2}}=\overrightarrow{a_{2}}-\frac{\overrightarrow{a_{2}} \cdot \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}}}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)-\frac{-2}{3}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 3 \\
0 \\
1 / 3 \\
2 / 3
\end{array}\right) \text {, take } \overrightarrow{v_{2}}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
2
\end{array}\right)
\end{aligned}
$$

$\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{c}b \\ m\end{array}\right]=\left[\begin{array}{c}0.5 \\ 1 \\ 2.5 \\ 3\end{array}\right]$

Can we 'solve' this inconsistent system?
If $y=m x+b$
First Part: $(x, y)=(0,0.5): 0.5=b$
Second Part: $(x, y)=(1,1): 1=m+b \Rightarrow m=0.5$
Third Part: $(x, y)=(2,2.5): 2.5=\underbrace{2 m+b}_{=1.5} \Rightarrow N O$

The Least Squares Solution to a Linear System
Definition: Least Squares Solution
Let A be a $m \times n$ matrix. A least squares solution to $A \vec{x}=\vec{b}$ is the solution \hat{x} for which
$\vec{b}|-A \hat{x} \# \vec{y}|-A \vec{x} \|$
for all $\vec{x} \in \mathbb{R}^{n}$.
If \vec{x} is a solution:
$\vec{b} \mid-A \vec{x} \# \overrightarrow{0} \|=0$
Here: if the system is inconsistent:
$\vec{b} \mid-A \vec{x} \# 0 \forall \vec{x} \in \mathbb{R}^{n}$
Least-Square solution: \hat{x} :
$\vec{b}|-A \hat{x} \sharp \vec{b}|-A \vec{x} \forall \vec{x} \in \mathbb{R}^{n}$

Lecture 33

Wednesday, November 10, 2021 10:18 PM

Notes:

A Geometric Interpretation

The vector \vec{b} is closer to $A \vec{x}$ than to $A \vec{x}$ for all other $\vec{x} \in \operatorname{Col}(A)$.
If $\vec{b} \in \operatorname{Col}(A)$, then \hat{x} is a solution to $A \vec{x}=\vec{b}$
2. Seek \hat{x} so that $A \hat{x}$ is as close to \vec{b} as possible. That is, \hat{x} should solve $A \hat{x}=\hat{b}$ where \hat{b} is the orthogonal projection of \vec{b} onto $\operatorname{Col}(A)$

The Normal Equations

Theorem (Normal Equations for Least Squares)
The least squares solutions to $A \vec{x}=\vec{b}$ coincide with the solutions to

$$
A^{T} A \vec{x}=A^{T} \vec{b}
$$

Normal Equations

Derivation

1. \hat{x} is the least squares solution, is equivalent to $\vec{b}-A \hat{x}$ is orthogonal to $\operatorname{Col}(A)$ andC $\left(o l(A)^{\perp}\right)=\operatorname{Null}(A)$
2. A vector \vec{v} is $\left(\underset{\sim}{\text { ull }}(A)^{\perp}\right)$ if and only if $A^{T} \vec{v}=\overrightarrow{0}$
3. So we obtain the Normal Equations:
\hat{x} least square solution
Iff $\vec{b}-A \hat{x} \in \operatorname{Null}\left(A^{T}\right)$
Iff $A \vec{G}(-A \hat{x}) 0$
Iff $\underbrace{A^{T} A \hat{x}=A^{T} \vec{b}}$
Normal Equations
Ex.
Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
2 \\
0 \\
11
\end{array}\right]
$$

Solution:
$A^{T} A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]=\left(\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right)$
$A^{T} \vec{b}=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]=\left[\begin{array}{c}19 \\ 11\end{array}\right]$
The normal equations $A^{T} A \hat{x}=A^{T} \vec{b}$ because

$$
\begin{gathered}
\left(\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right)=\binom{19}{11} \\
B^{-1}= \\
\frac{1}{85-1}\left(\begin{array}{cc}
5 & -1 \\
-1 & 17
\end{array}\right) \\
\rightarrow \vec{x}=\frac{1}{84}\left(\begin{array}{cc}
5 & -1 \\
-1 & 17
\end{array} 1_{11}^{19}\right)\binom{1}{2}
\end{gathered}
$$

Theorem

Theorem (Unique Solutions for Least Squares)
Let A be any $m \times n$ matrix. These statements are equivalent.

1. The equation $A \vec{x}=\vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^{m}$.
2. The columns of A are linearly independent.
3. The matrix $A^{T} A$ is invertible.

And, if these statemetns hold, the least square solution is

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Use heuristic: $A^{T} A$ plays the role of ‘length-squared’ of the matrix A.
Ex. 2
Compute the least squares solution to $A \vec{x}=\vec{b}$

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Hint: the columns of A are orthogonal.
$A=\left(\begin{array}{ll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}}\end{array}\right)$: linearly independent (unique least-square solution), easy to compute \hat{b}
$\hat{b}=\frac{\vec{b} \cdot \overrightarrow{a_{1}}}{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{1}}} \overrightarrow{a_{1}}+\frac{\vec{b} \cdot \overrightarrow{a_{2}}}{\overrightarrow{a_{2}} \cdot \overrightarrow{a_{2}}} \overrightarrow{a_{2}}=\frac{8}{4} \overrightarrow{a_{1}}+\frac{45}{90} \overrightarrow{a_{2}}=2 \overrightarrow{a_{1}}+\frac{1}{2} \overrightarrow{a_{2}}$
$\rightarrow \hat{x}=\binom{2}{1 / 2}$

Notes:
Theorem (Least Squares and $Q R$ decomposition. Then for each $\vec{b} \in \mathbb{R}^{m}$ the equation $A \vec{x}=\vec{b}$ has the unique least squares solution

$$
R \hat{x}=Q^{T} \vec{b}
$$

(Remember, R is upper triangular, so the equation above is solved by back-substitution.)
$A=Q R$
Normal Equations: $A^{T} A \vec{x}=A^{T} \vec{b}$
$R^{T} Q^{T} Q R \vec{x}=R^{T} Q^{T} \vec{b}$
$R^{T} R \vec{x}=R^{T} Q^{T} \vec{b}$
$R \vec{x}=Q^{T} \vec{b}$
Compute the least squares solution
$A=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}3 \\ 5 \\ 7 \\ -3\end{array}\right]$

Solution. The $Q R$ decomposition of A is

$$
\begin{aligned}
& A=Q R=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right] \\
& Q^{T} \vec{b}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
4
\end{array}\right]
\end{aligned}
$$

And then we solve by backend substitution $R \vec{x}=Q^{T} \vec{b}$

$$
\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
4
\end{array}\right] \begin{gathered}
x_{3}=2 \\
x_{2}=-6 \\
x_{1}=10
\end{gathered} \rightarrow \vec{x}=\left(\begin{array}{c}
10 \\
-6 \\
2
\end{array}\right)
$$

Section 6.6: Applications to Linear Models

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the residuals

The least squares line minimizes the sum of squares of the residuals

Ex. 1 Compute the least squares line $y=\beta_{0}+\beta_{1} x$ that best fits the data

X	2	5	7	8
Y	1	1	4	3

We want to solve
$\left[\begin{array}{ll}1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8\end{array}\right]\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 3\end{array}\right]$

This is a least-squares problem: $X \vec{\beta}=\vec{y}$

The normal equations are $X^{T} X=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8\end{array}\right]=\left[\begin{array}{cc}4 & 22 \\ 22 & 142\end{array}\right]$

$$
X^{T} \vec{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]
$$

So the least-squares solution is given by:

$$
\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]
$$

$y=\beta_{0}+\beta_{1} x=-\frac{5}{21}+\frac{19}{42} x$
As we may have guessed, β_{0} is negative, and β_{1} is positive.

Least Squares Fitting for Other Curves
We con consider the least squares fitting for the form
$y=c_{0}+c_{1} f_{1}(x)+c_{2}+c_{2} f_{2}(x)+\cdots+c_{k}+c_{k} f_{k}(x)$
If functions f_{i} are known, this is a linear problem in the c_{i} variables.
Ex.
Consider the data in the table below

X	1	0	0	1
Y	2	1	0	6

Determine the coefficients c_{1} and c_{2} for the curve $y=c_{1} x+c_{2} x^{2}$ that best fits the data.

$$
x \vec{\beta}=\vec{y}
$$

$\left(\begin{array}{cccc}1 & x_{1} & \cos \left(x_{1}\right) & \sin \left(x_{1}\right) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n} & \cos \left(x_{n}\right) & \sin \left(x_{n}\right)\end{array}\right)\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$
Normal Equations

$$
\begin{aligned}
& X^{T} X=\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\left(\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right. \\
& X^{T} \vec{y}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\left(\begin{array}{l}
1 \\
0 \\
6
\end{array}\right)=\binom{4}{8}\right.
\end{aligned}
$$

$$
\left(\begin{array}{ll|l}
2 & 0 & 4 \\
0 & 2 & 8
\end{array}\right) c_{1}=2, c_{2}=4
$$

Projection method:

$$
\begin{gathered}
y=\operatorname{Proj}_{\operatorname{Col}(A)} \vec{y}=\frac{\vec{y} \cdot \overrightarrow{x_{1}}}{x_{1} \cdot x_{1}} x_{1}+\frac{\vec{y} \cdot \overrightarrow{x_{2}}}{x_{2} \cdot x_{2}} x_{2} \\
=\frac{4}{2} \overrightarrow{x_{1}}+\frac{8}{2} \overrightarrow{x_{2}}=X\binom{2}{4} \\
\rightarrow \vec{c}=\binom{2}{4}
\end{gathered}
$$

Studio 21

Thursday, November 11, 2021 12:31 PM

Least Squares
Want to solve $A \vec{x}=\vec{b}$ but this system is inconsistent. Instead, find \vec{x} to minimize $\|\hat{x}-\vec{b}\|$
Def. \hat{x} is a least squares solution to $A \vec{x}=\vec{b}$ if $A|\hat{x}-\vec{b} \nVdash A| \vec{x}-\vec{b} \|$

If A has linearly independent columns, then $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$

Suppose A has independent columns. $A=Q R, Q=\left[\overrightarrow{u_{1}} \ldots \overrightarrow{u_{n}}\right]$ which forms $\left\{\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}\right\}$ orthonormal basis for $\operatorname{Col}(A)$
$\Rightarrow \hat{b}=\operatorname{Proj}_{\operatorname{Col}(A)} \vec{b}=\operatorname{Proj}_{\overrightarrow{u_{1}}} \vec{b}+\cdots \operatorname{Proj}_{\overrightarrow{u_{n}}} \vec{b}=\overrightarrow{u_{1}} \cdot \overrightarrow{b_{n}} \overrightarrow{u_{1}}+\cdots+\overrightarrow{u_{n}} \cdot \overrightarrow{b_{n}} \vec{h}_{h}=Q\left[\begin{array}{c}\overrightarrow{u_{1}} \cdot \vec{b} \\ \vdots \\ \overrightarrow{u_{n}} \cdot \vec{b}\end{array}\right]=Q Q^{T} \vec{b}$
$A \hat{x}=Q Q^{T} \vec{b} \Rightarrow A^{T} A \hat{x}=A^{T} Q Q^{T} \vec{b}=R^{T} Q^{T} Q Q^{T} \vec{b}=A^{T} \vec{b} \Rightarrow \hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$

Worksheet 6.5 and 6.6: Least-Squares Problems, Applications to Linear Models

Worksheet Exercises

1. Fill in the blanks. These questions concern that least squares solution \hat{x} to $A \vec{x}=\vec{b}$.
a. If $A=Q R$, then $A^{T} A=R^{T} R$.
b. If the columns of A are linearly independent, then $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$
c. If \vec{b} is in the column space of A, then $A \hat{x}=\vec{b}$.
d. If $A=Q R$, then R is invertible then $\hat{x}=R^{-1} Q^{T} \vec{b}$
2. These questions concern the least squares solution \hat{x} to $A \vec{x}=\vec{b}$. Indicate whether the statements are true or false.
a. The solution \hat{x} is chosen so that $A \hat{x}$ is close as possible to \vec{b}.
i. True
b. If $\vec{y} \neq \hat{x}$ then $A|\hat{x}-\vec{b} \nVdash A| \vec{y}-\vec{b} \|$
i. False
ii. (A dependent columns)
c. If the columns of A are linearly independent, then the least squares solution is unique.
i. True
3. Use the $Q R$ decomposition to calculate the least squares solution to $A \vec{x}=\vec{b}$
a. $A=Q R=\left(\begin{array}{cc}2 / 3 & -1 / 3 \\ 2 / 3 & 2 / 3 \\ 1 / 3 & -2 / 3\end{array}\right)\left(\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}7 \\ 3 \\ 1\end{array}\right)$
$\Rightarrow R \hat{x}=Q^{T} \vec{b} \Rightarrow\left(\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ccc}2 / 3 & 2 / 3 & 1 / 3 \\ -1 / 3 & 2 / 3 & -2 / 3\end{array}\right)\left(\begin{array}{l}7 \\ 3 \\ 1\end{array}\right) \Rightarrow\left(\begin{array}{cc}3 & 5 \\ 0 & 1\end{array}\right)=\left(\begin{array}{c}7 \\ -1\end{array} \Rightarrow x_{1}=4, x_{2}=-1 \Rightarrow\binom{4}{-1}\right.$
4. Written Explanation Exercise Explain step by step how to find the best fit line for a collection of n data points $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \ldots,\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$ in \mathbb{R}^{2}. Why is the best fit line unqiue?

Line of best fit: $y=a x+b, a\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right]+b\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right] \Rightarrow\left[\begin{array}{cc}x_{1} & 1 \\ \vdots & \vdots \\ x_{k} & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right]$
5. Four points in \mathbb{R}^{3} with coordinates (x, y, z) are give in the table below.
a. $x-1021$
b. $y \quad 2102$
c. $z \quad 910-1$

Determine the coefficients c_{1} and c_{2} for the plane $z=c_{1} x+c_{2} y$ that best fits the data. Hint: normal eqautions.

Studio 22

Tuesday, November 16, 2021 12:33 PM

Tor F

- The range of $T(x)=A x$ is $\operatorname{Row}(A)$
- False! range of $T(x)=A x$ is $\operatorname{Col}(A)$
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$
$A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 0\end{array}\right] \in \operatorname{Range}(T)$
But, $A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=1\left[\begin{array}{l}1 \\ 0\end{array}\right]+0\left[\begin{array}{l}2 \\ 0\end{array}\right]+1\left[\begin{array}{l}3 \\ 0\end{array}\right] \in \operatorname{Col}(A)$
- $\operatorname{dinR}(\operatorname{ow}(A) \neq \operatorname{din} \check{(o l}(A))$
- True (both are the \# of pivots)
- Given a subspace S and a vector b, there is a unique $x \in S$ that minimizes $x \|-b \mid$
- True (the minimizer is just $\operatorname{Proj}_{S} b$)
- If A is $n \times n$ and invertible, then A is diagonalizable.
- False ($\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right.$ \}ounter example)
- $p(\lambda)=\operatorname{det}(A-\lambda I)=(1-\lambda)^{2} \Rightarrow 1$ is an eigenvalue of alg. mult. 2
- Is geom $(1)=2$?
$\square A-I \sim\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \operatorname{geom}(1)=1$.
\square Since geom(1) $<\operatorname{alg}(1), A$ is not diagonalizable
- A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable

○ True $(\operatorname{alg}(\lambda)=1$ for all λ. Since $1 \leq \operatorname{geom}(\lambda) \leq \operatorname{alg}(\lambda)$, geom $(\lambda)=1$ for all $\lambda)$
Def. A is diagonalizable if $A=P D P^{-1}$ where D is diagonal.

Review Worksheet Exam 3

1. State True or False:
a. A matrix $A \in \mathbb{R}^{4 \times 4}$ which has eigenvalues $0,1,2,3$ is diagonalizable.
i. True
b. There exists a matrix $A \in \mathbb{R}^{3 \times 3}$ with eigenvalues $i, i+1,1$.
i. False
c. If u, v are orthogonal vectors then2 $|\mu-3 v \# 2| \mu+3 v \|$
i. True
d. A least squares solution \hat{x} for the system $A x=b$ satisfies $A \hat{x}=b$ if and only if $b \in \operatorname{Col}(A)$. i. True
2. Use Gram Schmidt to find an orthonormal basis for the space spanned by the following vectors:
$\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \quad\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right), \quad\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right)$
$\left\{\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \quad \frac{1}{\sqrt{30}}\left(\begin{array}{c}5 \\ -2 \\ -1\end{array}\right), \quad \frac{1}{\sqrt{5}}\left(\begin{array}{c}0 \\ -1 \\ 2\end{array}\right)\right\}$
3. Find the best fit line $y=m x+b$ for the following data:

X	1	2	3	4
Y	3	1	-1	5

4. Find matrices P and D such that P is invertible, D is diagonal, and $A=P D P^{-1}$, where $A=\left(\begin{array}{ccc}4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2\end{array}\right)$. The characteristic polynomial of A is $p_{A}(t)=-(t-1)^{2}(t-2)$.
5. Find matrices P and C such that P is invertible, C is a rotation-dilation matrix, and $A=P C P^{-1}$, where $A=\left(\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right)$

Material Covered:
Chapter 7: Symmetric Matrices and Quadratic Forms

- Section 7.1 : Diagonalization of Symmetric Matrices
- Section 7.2 : Quadratic Forms
- Section 7.3 : Constrained Optimization
- Section 7.4 : The Singular Value Decomposition

Lecture 35

Monday, November 15, 2021 7:53 PM

Notes:

Section 7.1: Diagonalization of Symmetrix Matrices

Symmetric Matrices

Definition
Matrix A is symmetric if $A^{T}=A$
Ex. Which of the following matrices are symmetric? Symbols * and * represent real numbers.

$\boldsymbol{A}^{T} A$ is Symmetric

A very common example: For any matrix A with columns $a_{1}, . ., a_{n}$

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{ccc}
- & a_{1}{ }^{T} & - \\
- & a_{2}{ }^{T} & - \\
\vdots & \vdots & \vdots \\
- & a_{n}{ }^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
a_{1}{ }^{T} & a_{2}{ }^{T} & \cdots & a_{n}{ }^{T} \\
\mid & \mid & \cdots & \mid
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}{ }^{T} a_{1} & a_{1}{ }^{T} a_{2} & \cdots & a_{1}{ }^{T} a_{n} \\
a_{2}{ }^{T} a_{1} & a_{2}{ }^{T} a_{2} & \cdots & a_{2}{ }^{T} a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}{ }^{T} a_{1} & a_{n}{ }^{T} a_{2} & \cdots & a_{n}{ }^{T} a_{n}
\end{array}\right] \\
& a_{1}{ }^{T} a_{2}=a_{1} \cdot a_{2}=a_{2} \cdot a_{1}=a_{2}{ }^{T} a_{1} \\
& \left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A
\end{aligned}
$$

Symmetric Matrices and their Eigenspaces

Theorem
A is a symmetric matrix, with eigenvectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ corresponding to two distinct eigenvalues. Then $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.
Proof:
$\overrightarrow{v_{1}}$ eigenvector for λ_{1} with $\lambda_{1} \neq \lambda_{2}$
$\overrightarrow{v_{2}}$ eigenvector for λ_{2}
By the previous fact:

$$
A \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\overrightarrow{v_{1}} \cdot A \overrightarrow{v_{2}}, \quad \lambda=A
$$

Thus: $\left(\lambda_{1}-\lambda_{2}\right) \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0$
Ex. 1
Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.
$A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), \quad \lambda=-1,1$
If A is symmetric and diagonalizable:
P : matrix of orthonormal eigenvectors
$\rightarrow A=P D P^{-1}=P D P^{T}$
$\lambda_{1}=-1: A+I=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right) \sim\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\rightarrow \overrightarrow{v_{1}}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
$\lambda_{2}=1: A-I=\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right) \sim\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\rightarrow \overrightarrow{v_{2}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
Here: $\overrightarrow{v_{2}} \cdot \overrightarrow{v_{1}}=\overrightarrow{v_{3}} \cdot \overrightarrow{v_{1}}=0$
$P=\left(\begin{array}{ccc}-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 & 0 \\ 1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right), \quad D=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Spectral Theorem
Recall: If P is an orthogonal $n \times n$ matrix, then $P^{-1}=P^{T}$, which implies $A=P D P^{T}$ is diagonalizable and symmetric.
Theorem: Spectral Theorem
An $n \times n$ symmetric matrix A has the following properties.

1. All eigenvalues of A are real.
2. The dimension of each eigenspace is full, that it's dimension is equal to it's algebraic multiplicity.
3. The eigenspaces are mutually orthogonal.
4. A can be diagonalized $A=P D P^{T}$, where D Is diagonal and P is orthogonal.

Proof:

1. Assume that $\lambda_{1} \neq \mathbb{R}$
$\overrightarrow{v_{1}}$ eigenvector for λ_{1}
$\overrightarrow{v_{2}}$ eigenvector for I_{1}
For symmetric matrices:
$A \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\overrightarrow{v_{1}} \cdot A \overrightarrow{v_{2}}, \quad \lambda=A$
Thus: $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0$
If $\overrightarrow{v_{1}}=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right): \quad \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}=\left(\begin{array}{c}\left|z_{1}\right|^{2} \\ \vdots \\ \left|z_{n}\right|^{2}\end{array}\right)$

Spectral Decomposition of a Matrix

Spectral Decomposition
Suppose A can be orthogonally diagonalized as
$A=P D P^{T}=\left[\overrightarrow{u_{1}}\right.$
$\left.\cdots \quad \overrightarrow{u_{n}}\right]\left[\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}\end{array}\right]=\left[\begin{array}{c}{\overrightarrow{u_{1}}}^{T} \\ \vdots \\ {\overrightarrow{u_{n}}}^{T}\end{array}\right]$

Then A has the decomposition

Each term in the sum, $\lambda_{i}{\overrightarrow{u_{i}}}_{u_{i}}{ }^{T}$, is an $n \times$ matrix with rank 1
$\overrightarrow{u_{1}}=\left[\begin{array}{c}\overrightarrow{u_{1}} \\ \vdots \\ \overrightarrow{u_{n}}\end{array}\right] \quad{\overrightarrow{u_{1} u_{1}}}^{T}=\left[\begin{array}{lll}u_{1} \overrightarrow{u_{1}} & \cdots & u_{n} \overrightarrow{u_{n}}\end{array}\right]$
$A=\left[\overrightarrow{u_{1}} \cdots \overrightarrow{u_{n}}\right]\left[\begin{array}{c}\lambda_{1}{\overrightarrow{u_{1}}}^{T} \\ \vdots \\ \lambda_{n}{\overrightarrow{u_{n}}}^{T}\end{array}\right]=\left[\begin{array}{cccc}u_{11} & u_{21} & & u_{n 1} \\ \vdots & \vdots & \cdots & \vdots \\ u_{1 n} & u_{2 n} & & u_{n n}\end{array}\right]\left[\begin{array}{ccc}\lambda_{1} \overrightarrow{u_{11}} & \cdots & \lambda_{1} \overrightarrow{u_{1 n}} \\ \vdots & & \vdots \\ \lambda_{n} \overrightarrow{u_{n 1}} & \cdots & \lambda_{n} \overrightarrow{u_{n n}}\end{array}\right]=\lambda_{1}{\overrightarrow{u_{1}}{\overrightarrow{u_{1}}}^{T}+\cdots+\lambda_{n}{\overrightarrow{u_{n}} \vec{u}_{n}}^{T} .}^{2}$

Ex. 2
Construct a spectral decomposition for A whose orthogonal diagonalization is given.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) P D P^{T}=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{lll}
4 & 0 \\
0 & 2
\end{array}\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\right. \\
& \overrightarrow{u_{1}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} \\
& \lambda_{1}=4 \\
& \overrightarrow{u_{1}}=\binom{-1 / \sqrt{2}}{1 / \sqrt{2}} \\
& \lambda_{2}=2
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{u_{1} u_{1}}{ }^{T}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}\left(\begin{array}{ll}
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A=4\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)+2\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\left(\begin{array}{cc}
2 & 2 \\
2 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

Notes:

Section 7.2: Quadratic Forms

Quadratic Forms

Definition
A quadratic form is a function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right]
$$

Matrix A is $n \times n$ and symmetric.
In the above, \vec{x} is a vector of variables
$\left.A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) Q(\vec{x})=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) x_{x_{2}}^{x_{1}}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}$
Ex. 1
Compute the quadratic form $\vec{x}^{T} A \vec{x}$ for the matricies below
For A :

$$
\left.Q(\vec{x})=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right) x_{x_{2}}^{x_{1}}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{4 x_{1}}{3 x_{2}}=4 x_{1}^{2}+3 x_{2}^{2}
$$

For B :

$$
Q(\vec{x})=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
4 & 1 \\
1 & -3
\end{array}\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{4 x_{1}+x_{2}}{x_{1}-3 x_{2}}=4 x_{1}^{2}+x_{1} x_{2}+x_{1} x_{2}-3 x_{2}^{2}=4 x_{1}^{2}+2 x_{1} x_{2}-3 x_{2}^{2}\right.
$$

Cross-Term: the coefficients

Ex. 1 - Surface Plots

The surfaces for Example 1 are shown below.
Students are not expected to be able to sketch quadratic surfaces, but it is helpful to see what they look like.

Ex. 2
Write Q in the form $\vec{x}^{T} A \vec{x}$ for $\vec{x} \in \mathbb{R}^{3}$

$$
Q(\vec{x})=5 x_{1}^{2}-2 x_{2}^{2}+3 x_{3}^{2}+6 x_{1} x_{3}-12 x_{2} x_{3}
$$

$A=\left(\begin{array}{ccc}5 & 0 & 3 \\ 0 & -1 & -6 \\ 3 & -6 & 3\end{array}\right)$

Change of Variable

If \vec{x} is a variable vector in \mathbb{R}^{n}, then a change of variable can be represented as:

$$
\vec{x}=P \vec{y}, \text { or } \vec{y}=P^{-1} \vec{x}
$$

With this change of variable, the quadratic form $\vec{x}^{T} A \vec{x}$ becomes:

$$
Q=\vec{x}^{T} A \vec{x}=(P \vec{y})^{T} A P \vec{y}=\underbrace{\vec{y}^{T}}_{\text {quadratic form in }} \underbrace{P^{T} A P}_{\text {symmetric }} \vec{y}
$$

Idea: if A is symmetric, there exists P orthogonal and D diagonal such that $A=P D P^{T}$

$$
\rightarrow D=P^{T} A P
$$

Ex. 3
Make a change of variable $\vec{x}=P \vec{y}$ that transforms $Q=\vec{x}^{T} A \vec{x}$ so that it does not have cross terms. The orthogonal decomposition of A is given.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right) P D P^{-1}: Q(\vec{x})=3 x_{1}{ }^{2}+4 x_{1} x_{2}+6 x_{2}{ }^{2} \\
& P=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \\
& D=\left(\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right) \\
& Q(\vec{x})=\vec{x}^{T} A \vec{x} \Rightarrow A=P D P^{T}=\vec{y}^{T} D \vec{y}=2 y_{1}^{2}+7 y_{2}^{2} \\
& \text { (No cross-terms) }
\end{aligned}
$$

Geometry

Suppose $Q(\vec{x})=\vec{x}^{T} A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric. Then the set of \vec{x} that satisfies

$$
C=\vec{x}^{T} A \vec{x}
$$

defines a curve or surface in \mathbb{R}^{n}

Previous Example:
$Q(\vec{x})=3 x_{1}{ }^{2}+4 x_{1} x_{2}+6 x_{2}{ }^{2}$
$3 x_{1}^{2}+4 x_{1} x_{2}+6 x_{2}^{2}=8, \quad 2 y_{1}^{2}+7 y_{2}^{2}=8$
$\Rightarrow y_{1}=2, \quad y_{2}=\sqrt{\frac{8}{7}}$

Principle Axes Theorem

Theorem
If A is a symmetric matrix then there exists an orthogonal change of variable $\vec{x}=P \vec{y}$ that transforms $\vec{x}^{T} A \vec{x}$ to $\vec{x}^{T} D \vec{x}$ with no cross-product terms.

Proof:
$A=P D P^{-1} P D P^{T}$
(P orthogonal, D diagonal)
$Q=\vec{x}^{T} A \vec{x}=\vec{y}^{T} P^{T} A P \vec{y}=\vec{y}^{T} D \vec{y}=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Ex. 5
Compute the quadratic form $Q(\vec{x})=\vec{x}^{T} A \vec{x}$ for $A=\left(\begin{array}{ll}5 & 2 \\ 2 & 8\end{array}\right)$ nd find a change of variable that removes the cross-product term.

```
    \(Q(\vec{x})=5 x_{1}{ }^{2}+4 x_{1} x_{2}+8 x_{2}{ }^{2}\)
\(A=\left(\begin{array}{ll}5 & 2 \\ 2 & g\end{array}\right) \lambda=4,9\)
\(|A-\lambda I|=\lambda^{2}-13 \lambda+36\)
    \(\lambda_{1,2}=\frac{13 \pm \sqrt{169-144}}{2}=4\) or 9
```

$\lambda_{1}=4$:
$A-4 I=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \quad \overrightarrow{v_{1}}=\binom{2}{-1}$
$\lambda_{1}=9:$
$\overrightarrow{v_{2}}=\binom{1}{2}$ ince they are orthogonal
$P=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right) \quad \vec{x}=P \vec{y}$
$\rightarrow Q=4 y_{1}{ }^{2}+9 y_{2}{ }^{2}$

Classifying Quadratic Forms

$Q=x_{1}{ }^{2}+x_{2}{ }^{2}$
$Q=-x_{1}{ }^{2}-x_{2}{ }^{2}$
Definition
A quadratic form Q is

1. Positive definite if $Q>0$ for all $\vec{x} \neq \overrightarrow{0}$.
2. Negative definite if $Q<0$ for all $\vec{x} \neq \overrightarrow{0}$.
3. Positive semidefinite if $Q \geq 0$ for all \vec{x}.
4. Negative semidefinite if $Q \leq 0$ for all \vec{x}.
5. Indefinite if Q can be positive or negative.

Quadratic Forms and Eigenvalues

Theorem
If A is a symmetric matrix with eigenvalues λ_{i}, then $Q=\vec{x}^{T} A \vec{x}$ is

1. Positive definite iff $\lambda_{i}>0$ for all i
a. Semidefinite ≥ 0
2. Negative definite iff $\lambda_{i}<0$ for all i

$$
\text { a. Semidefinite } \leq 0
$$

3. Indefinite iff $\lambda_{i}>0, \lambda_{j}<0$ for some i, j

Proof:
If $A=P D P^{T}$
$\vec{x}=P \vec{y}$
$Q=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Ex. 6
We can now return to our motivating question: does this inequality hold for all x, y ? $x^{2}-6 x y+9 y^{2} \geq 0$
$A=\left(\begin{array}{cc}1 & -3 \\ -3 & 9\end{array}\right)$
Eigenvalues: 0, 10
Q is positive semidefinite
$A=\left(\begin{array}{ll}2 & 4 \\ 4 & 5 \\ \hline\end{array}\right)|A|=-6=\lambda_{1} \lambda_{2} \Rightarrow$ one is positive and one is negative
$6 x_{1}{ }^{2}+3 x_{1} x_{2}+7 x_{2}{ }^{2} \geq 0$?
$A=\left(\begin{array}{cc}6 & 3 / 2 \\ 3 / 2 & 7\end{array}\right)$
\Rightarrow Positive definite

Notes:

Section 7.3: Constrained Optimization

Ex. 1
The surface of a unit sphere in \mathbb{R}^{3} is given by

$$
1=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=\vec{x} \|
$$

Q is a qunaitity we want to optimize
$Q(\vec{x})=9 x_{1}{ }^{2}+4 x_{2}{ }^{2}+3 x_{3}{ }^{2}$
Find the largest and smallest values of Q on the surface of the sphere.

$$
3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \leq Q(\vec{x}) \leq 9\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

Where $\left(x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}\right)=1$
Here:
The minimum is 3 , attained at $\vec{x}= \pm \overrightarrow{e_{3}}$
The maximum is 9 , attained at $\vec{x}= \pm \overrightarrow{e_{1}}$

A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Subject to

新 1
That is, we want to find
$m=\min \{Q(\vec{x}): \vec{x} \# 1\}$
$M=\max \{Q(\vec{x}) \cdot \vec{x} \| 1\}$
This is an example of a constrained optimization problem. Note that we may also want to know were these extreme values are obtained.

Constrained Optimization and Eigenvalues

Theorem
If $Q(\vec{x})=\vec{x}^{T} A \vec{x}, A$ is a real $n \times n$ symmetric matrix, with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{n}
$$

and associated normalized eigenvectors

$$
\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}
$$

Then, subject to the constraint $\mathbb{Z} \| ⿻=1$,

- The maximum value of $Q(\vec{x})=\lambda_{1}$, attained at $\vec{x}= \pm \overrightarrow{u_{1}}$.
- The minimum value of $Q(\vec{x})=\lambda_{n}$, attained at $\vec{x}= \pm \overrightarrow{u_{n}}$.

Proof:
$P=\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}\right)$ orthogonal
Define \vec{y} by $\vec{x}=P \vec{y}$
$Q=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Here $1=\vec{x} \| \# P \mid \overrightarrow{\mid} \# \# \overrightarrow{y|l| i n c e} P$ has orthonormal columns
As in the previous example:
Minimum is λ_{n}, attained for $\vec{y}= \pm \overrightarrow{e_{n}}$
Then $\vec{x}= \pm P \overrightarrow{e_{n}}= \pm \overrightarrow{u_{n}}$
Maximum is λ_{1}, attained for $\vec{y}= \pm \overrightarrow{e_{1}}$

$$
\text { Then } \vec{x}= \pm P \overrightarrow{e_{1}}= \pm \overrightarrow{u_{1}}
$$

Ex. 2
Calculate the maximum and minimum values of $\mathrm{Q}(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\vec{x} \# 1$, and identify points where these values are obtained.
$Q(\vec{x})=x_{1}{ }^{2}+2 x_{2} x_{3}$
The symmetric matrix A associated to Q is

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

$|A-\lambda I|=(I-\lambda)\left|\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=(1-\lambda)\left(\lambda^{2}-1\right)(1-\lambda)(\lambda+1)(\lambda-1)$
Eigenvalues: 1,1,-1
Eigenvectors:
$\lambda_{1}=\lambda_{2}=1:(A-I)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1\end{array}\right) \sim\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\rightarrow \overrightarrow{u_{1}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \overrightarrow{u_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
$\lambda_{3}=-1$: by orthogonality:

$$
\rightarrow \overrightarrow{u_{3}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

- The minimum value of -1 , attained at $\vec{x}= \pm \overrightarrow{u_{3}}$
- The maximum value of 1 , attained at $\vec{x}= \pm \overrightarrow{u_{1}}$.
- Or $\vec{x}= \pm \overrightarrow{u_{2}}$
- Or $\vec{x}=\vec{a} \overrightarrow{u_{1}}+b \overrightarrow{u_{2}}$ with $a^{2}+b^{2}=1$
- सी $\|=a^{2}+b^{2}$
- It is a circle!

Geom. Multiplicity $=1$, line
Geom. Multiplicity $=2$, circle
An Orthogonality Constraint
Theorem

Suppose
$Q(\vec{x})=\vec{x}^{T} A \vec{x}, A$ is a real $n \times n$ symmetric matrix, with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{n}
$$

and associated normalized eigenvectors $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}$
Then, subject to the constraint $\vec{\lambda} \| \overrightarrow{1}, \vec{x} \cdot \overrightarrow{u_{1}}=0$,

- The maximum value of $Q(\vec{x})=\lambda_{2}$, attained at $\vec{x}= \pm \overrightarrow{u_{*}}$.
- The minimum value of $Q(\vec{x})=\lambda_{n}$, attained at $\vec{x}= \pm \overrightarrow{u_{n}}$.

Note that λ_{2} is the second largest eigenvalue of A.
$P=\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}\right)$ orthogonal
Define \vec{y} by $\vec{x}=P \vec{y}$
$Q=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Here: $0=\vec{x} \cdot \overrightarrow{u_{1}}=(P \vec{y}) \cdot\left(P \overrightarrow{e_{1}}\right)=\vec{y} \cdot \overrightarrow{e_{1}}=\overrightarrow{y_{1}}$
Since P has orthogonal columns, preserve dot product
$Q=\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Minimum: λ_{n} for $\vec{y}=\overrightarrow{e_{n}}\left(\vec{x}= \pm \overrightarrow{u_{n}}\right)$
Maximum: λ_{2} for $\vec{y}=\overrightarrow{e_{2}}\left(\vec{x}= \pm \overrightarrow{u_{1}}\right)$
Ex. 3
Calculate the maximum and minimum values of $Q(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\overrightarrow{\|} \| 1$ and $\vec{x} \cdot \overrightarrow{u_{1}}=0$, and identify points where these values are obtained.

$$
Q(\vec{x})=x_{1}^{2}+2 x_{2} x_{3}, \quad \overrightarrow{u_{1}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

From example 2:
Maximum is 1, attained for $\vec{x}= \pm \overrightarrow{u_{2}}$
Ex. 4
Calculate the maximum and minimum values of $\mathrm{Q}(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\vec{x} \# 5$, and identify points where these values are obtained.
$Q(\vec{x})=x_{1}{ }^{2}+2 x_{2} x_{3}$
Eigenvalues: 1, 1, -1
$\operatorname{Max} Q(\vec{x})=25$
斉 5
2 points of view to see this:

1) Define \vec{y} by $\vec{x}=P \vec{y}, \mathrm{Q}=\lambda_{1}{y_{1}}^{2}+\lambda_{2} y_{2}{ }^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
$\lambda_{n}\left(y_{1}{ }^{2}+y_{2}{ }^{2}+y_{3}{ }^{2}\right) \leq Q \leq \lambda_{1}\left(y_{1}{ }^{2}+y_{2}{ }^{2}+y_{3}{ }^{2}\right)$

$$
=\overrightarrow{\vec{A}} \mid=\vec{x} \|=25
$$

1) $\vec{x} \| 5, \tilde{x}=\frac{\vec{x}}{\overrightarrow{\|} \|}=\frac{\vec{x}}{5}$
$\vec{x}=5 \tilde{x}, \tilde{x} \| \# 1$
$Q(\vec{x})=Q(5 \vec{x})=25 Q(\vec{x})$
$\rightarrow \max Q(\vec{x})=25 \max Q(\tilde{x})$ $\vec{x}\|=5, \vec{x}\| ⿻=1$

Lecture 38

Monday, November 29, 2021 3:26 PM

Notes:

Section 7.4: The Singular Value Decomposition

Ex. 1
The linear transform whose standard matrix is
$A=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & -1 \\ 1 & 1\end{array}\left(\begin{array}{cc}2 \sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)=\left(\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right)\right.$
Maps the unit circle in \mathbb{R}^{2} to an ellipse, as shown below. Identify the unit vector \vec{x} in which $A \vec{x} i \$$ maximized and compute this length.
Goal: max $|\vec{x}|$
羽 1
Remark: max $|\vec{x}| \mid n d$ max $\left|\left.\right|^{2}\right| \mid$ occur at the same place for \vec{x}
$A \mid \vec{k} \|=(A \vec{x}) \cdot(A \vec{x})=(A \vec{x})^{T} A \vec{x}=\vec{x} A^{T} A \vec{x}=\vec{x}^{T} A^{T} A \vec{x}$: it's quadratic form, so we can just use the eigenvalues of $A^{T} A$
Ex. 1 - Solution
$A=\left(\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right)$
$A^{T} A=\left(\begin{array}{ccc}2 & 2 \\ -1 & 1\end{array}\right) 2 \begin{array}{cc}2 & -1\end{array} \neq\left(\begin{array}{ll}8 & 0 \\ 0 & 2\end{array}\right)$
Eigenvalues/Eigenvectors:
8, $\binom{1}{0}$
2, $\binom{0}{1}$
\rightarrow max $\mid \overrightarrow{|c|} \|=8$ attained at $\vec{x}= \pm \overrightarrow{\rho_{1}}$
羽 1
$\Rightarrow \max \nmid \vec{x} \# \sqrt{8}=2 \sqrt{2}$ attained at $\vec{x}= \pm \overrightarrow{e_{1}}$ 레 1

Singular Values

The matrix $A^{T} A$ is always symmetric, with non-negative eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n} \geq 0$. Let $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ be the associated orthonormal eigenvectors. Then

$$
A \mid \vec{v}_{j}^{2} \|=A\left(\overrightarrow{v_{j}}\right)\left(\overrightarrow{v_{j}} \neq A\left(\overrightarrow{v_{j}}\right)\left(\overrightarrow{v_{j}} \neq \overrightarrow{v_{j}} A^{T} A \overrightarrow{v_{j}}=\lambda_{j} \overrightarrow{v_{j}} \cdot \overrightarrow{v_{j}}=\lambda_{j}\right.\right.
$$

If the A has rank r, then $\left\{A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{r}}\right\}$ is an orthogonal basis for $\operatorname{Col}(A)$:
For $1 \leq j<k \leq r$:

$$
A \overrightarrow{v_{j}} \cdot A \overrightarrow{v_{k}}=A\left(\frac{T}{v_{j}}\right) A \overrightarrow{v_{k}}={\overrightarrow{v_{j}}}^{T} A^{T} A \overrightarrow{v_{k}}=\lambda_{k} \overrightarrow{v_{j}} \cdot \overrightarrow{v_{k}}=0
$$

Definition: $\sigma_{1}=\sqrt{\lambda_{1}} \geq \sigma_{2}=\sqrt{\lambda_{2}} \cdots \geq \sigma_{n}=\sqrt{\lambda_{n}}$ are the singular values of A.
To sum up:
We have:A| $\vec{r}_{j} \# \sqrt{\lambda_{j}}=\sigma_{j}$

$$
\text { If } i \neq j: A \overrightarrow{v_{i}} \cdot A \overrightarrow{v_{j}}=0
$$

$A \overrightarrow{v_{1}} \ldots A \overrightarrow{v_{n}} \in \operatorname{Col}(A)$
$\vec{x} \in \mathbb{R}^{n}: \vec{x}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{n} \overrightarrow{v_{n}}$
$A \vec{x}=c_{1} A \overrightarrow{v_{1}}+\cdots+c_{n} A \overrightarrow{v_{n}}$
$\Rightarrow \operatorname{Span}\left(A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{n}}\right)=\operatorname{Col}(A)$
Say, $\operatorname{dim} \operatorname{Col}(A)=r$
$\operatorname{Span}\left(A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{n}}\right)=\operatorname{Span}\left(A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{r}}\right)$
$\rightarrow\left\{A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{r}}\right\}$ orthogonal basis of $\operatorname{Col}(A)$
The SVD
$\underset{\sim}{A}=\underbrace{U}_{\sim} \underbrace{\Sigma} \underbrace{V^{T}}$

Theorem: Singular Value Decomposition
A $m \times m$ matrix with rank r and non-zero singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ has a decomposition $U \Sigma V^{T}$ where

$$
\Sigma=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]_{m \times n}=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & \cdots & 0 & \\
0 & \sigma_{2} & \cdots & \vdots & 0 \\
\vdots & \vdots & \ddots & & \\
0 & 0 & \cdots & \sigma_{r} & \\
& 0 & & & 0
\end{array}\right]
$$

U is an $m \times n$ orthogonal matrix, and V is an $n \times n$ orthogonal matrix.
$A \in \mathbb{R}^{m \times n}$
$\rightarrow A^{T} A \in \mathbb{R}^{n \times n}$ has eigenvlaues $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n} \geq$
$\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ orthonormal basis of eigenvectors
$\left\{A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{r}}\right\}$ orthogonal basis of $\operatorname{Col}(A)$
Define: $\overrightarrow{u_{i}}=\frac{1}{A \bar{v}_{i} \|} \overrightarrow{v_{i}}=\frac{1}{\sigma_{i}} A \overrightarrow{v_{i}}$ for $1 \leq i \leq r$
Define $U=\left(\begin{array}{cc}\begin{array}{c}\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{r}} \\ \text { orthonormal basis of } \operatorname{Col}(A)\end{array} & \text { orthonormalbasis for } \operatorname{Col}(A)^{\perp}=\operatorname{Null}\left(A^{T}\right)\end{array}\right)$
$V=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right)$
$\Sigma=\left(\begin{array}{llllll}\overrightarrow{v_{1}} & & & & & \\ & \ddots & \overrightarrow{v_{r}} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)$
We want to prove that:
$A=U \Sigma V^{T} \Leftrightarrow A V=U \Sigma$

```
\(A V=\left(\begin{array}{llllll}A \overrightarrow{v_{1}}, \ldots, A \overrightarrow{v_{n}}\end{array}\right)=\left(\begin{array}{lllll}\overrightarrow{v_{1} u_{1}} & \cdots & \overrightarrow{v_{r}} \overrightarrow{u_{r}} & \overrightarrow{0} & \cdots\end{array}\right)\)
\(U \Sigma=\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}\right)\left(\begin{array}{cccccc}\overrightarrow{v_{1}} & & & & & \\ & \ddots & & & & \\ & & \overrightarrow{v_{r}} & & & \\ & & & 0 & \ddots & \\ & & & & & 0\end{array}\right)=\left(\begin{array}{llllll}\overrightarrow{v_{1} u_{1}} & \ldots & \overrightarrow{v_{r} u_{r}} & \overrightarrow{0} & \ldots & \overrightarrow{0}\end{array}\right)\)
```

$\rightarrow A V=U \Sigma$
$\Leftrightarrow A=U \Sigma V^{-1}=U \Sigma V^{T}$
$M=U \cdot \Sigma \cdot V^{*}$

Algorithm to find the SVD of A

Suppose A is $m \times n$ has rank $r \leq n$.

. Compute the squared singular values of $A^{T} A, \sigma_{i}{ }^{2}$
Compute the unit singular vector of $A^{T} A, \overrightarrow{v_{i}}$, use them to form V.
Compute an orthonormal basis for $\operatorname{Col}(A)$ using
$\overrightarrow{u_{i}}=\frac{1}{\sigma_{i}} A \overrightarrow{v_{i}}, i=1,2, \ldots r$
Extend the set $\left\{\overrightarrow{u_{i}}\right\}$ to form an orthonormal basis for \mathbb{R}^{m}, use the bassi for form U.
Ex. 2
Write down the singular value decomposition for
$\left[\begin{array}{cc}2 & 0 \\ 0 & -3 \\ 0 & 0 \\ 0 & 0\end{array}\right]=$

Ex. 3
Construct the singular value decomposition of
$A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
(It has rank 1.)

Studio 23

Tuesday, November 30, 2021 12:32 PM

Constrained Optimization
$Q(\vec{x})=x_{1}{ }^{2}+2 x_{2}{ }^{2}$
What is max $Q(\vec{x})$ where $\vec{x} \in \mathbb{R}^{2}$? (unconstrained optimization)
$\max Q(\vec{x})=\infty$
What is $\max Q(\vec{x})$ where $\vec{x} \| 1$? (constrained optimization)
In general, $Q(\vec{x})=\vec{x}^{T} A \vec{x}, A$ is symmetric
$\max Q(\vec{x})=\lambda_{\text {max }}=\max \{\lambda: \lambda$ eigenvalue of $A\}$
And $\lambda_{\max }=Q\left(\overrightarrow{x_{\max }}\right)$ where $\overline{\|_{\text {max }} \#} \# 1$ and $A \overrightarrow{x_{\max }}=\lambda_{\max } \overrightarrow{x_{\max }}$
$Q(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T}\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \vec{x}$

$$
\rightarrow \lambda_{\max }=2
$$

$\underbrace{\max Q(\vec{x})}_{x \neq 1}=2$ attained at $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1\end{array}\right]$

Worksheet 7.3 Constrained Optimization

Worksheet Exercises

1. Indicate whether the statements are true or false
a. The largest value of a positive definite quadratic form $\vec{x}^{T} A \vec{x}$ is the largest eigenvalue of A.
i. False
b. The largest value of a positive definite quadratic form $\vec{x}^{T} A \vec{x}$ subject to $\vec{x} \| 1$ is the largest value on the diagonal of A. i. False
2. Calculate the maximum and minimum values of the quadratic form $\vec{x}^{T} A \vec{x}$ subject to $\vec{x} \|=1$. Identify where this maximum is obtained.
a. $Q(\vec{x})=4 x_{1}{ }^{2}+x_{2}{ }^{2}+4 x_{1} x_{2}+3 x_{3}{ }^{2}, \vec{x} \in \mathbb{R}^{3}$
b. $A=\left[\begin{array}{lll}4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3\end{array}\right], A-\lambda I=\left[\begin{array}{ccc}4-\lambda & 2 & 0 \\ 2 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda\end{array}\right]=(3-\lambda)\left(\lambda^{2}-5 \lambda\right)=0,3,5 . \operatorname{Max}=5, \operatorname{Min}=0$.
c. $A-5 I=\operatorname{Null}\left(\left[\begin{array}{ccc}-1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & -2\end{array}\right]\right)=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) \Rightarrow \frac{1}{\sqrt{5}}\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)=x_{1}, \underbrace{\max Q(\vec{x})}_{x \neq 1}=Q\left(x_{1}\right)$
d. $A-0 I=\operatorname{Null}\left(\left[\begin{array}{lll}4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]\right)=\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right) \Rightarrow \frac{1}{\sqrt{5}}\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)=x_{2}, \underbrace{\min Q(\vec{x})}_{x \# 1}=Q\left(x_{2}\right)$
3. Calculate the maximum and minimum values of the quadratic form Q subject to $\vec{x} \|=1$ and $\vec{x} \cdot \vec{u}=0$.
a. $Q(\vec{x})=4 x_{1}{ }^{2}+x_{2}{ }^{2}+4 x_{1} x_{2}+3 x_{3}{ }^{2}, \vec{u}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
b. $A-3 I=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow x_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
c. $\underbrace{\max Q(\vec{x})}=Q\left(x_{3}\right)$

$$
\underbrace{\overrightarrow{\vec{u} \# 1}}_{\overrightarrow{\vec{x} \cdot \vec{u}=0}}
$$

d. $\underbrace{\min Q(\vec{x})}=Q\left(x_{2}\right)$

$$
\frac{\vec{x} \| 11}{\vec{x} \cdot \vec{u}=0}
$$

4. If possible, give example of the following.
a. A quadratic form $Q: \mathbb{R}^{3} \mapsto \mathbb{R}$, that has the maximum value 12 , subject to the constraint that $\overrightarrow{\|} \|$. i. $Q(\vec{x})=x_{1}{ }^{2}+12 x_{2}{ }^{2}+4 x_{3}{ }^{2}$
b. A quadratic form $Q: \mathbb{R}^{3} \mapsto \mathbb{R}$, that has the maximum value 4 at two distinct locations, subject to the constraint thatiz $\|$.
i. $Q(\vec{x})=4 x_{1}{ }^{2}+2 x_{2}{ }^{2}+4 x_{3}{ }^{2}$

Lecture 39

Wednesday, December 1, 2021 3:30 PM

Notes:

$M \vec{x}=U \Sigma V^{T} \vec{x}$

Ex. 2

Write down the singular value decomposition for
$\left[\begin{array}{cc}2 & 0 \\ 0 & -3 \\ 0 & 0 \\ 0 & 0\end{array}\right]=U \Sigma V^{T}$

$$
\begin{aligned}
& \underline{1^{s t}: \Sigma} \\
& A^{T} A=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -3 & 0 & 0
\end{array}\left(\begin{array}{cc}
2 & 0 \\
0 & -3 \\
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right)\right. \\
& \rightarrow \sigma_{1}=3, \quad \sigma_{2}=2 \\
& \Rightarrow \Sigma=\left(\begin{array}{ll}
3 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$2^{\text {nd }}: V$
$\lambda_{1}=9: A^{T} A-9 I=\left(\begin{array}{cc}-5 & 0 \\ 0 & 0\end{array}\right) \overrightarrow{v_{1}}=\binom{0}{1}$
$\lambda_{2}=4: \overrightarrow{v_{2}}=\binom{1}{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$3{ }^{3^{\text {rd }}: U}$
$U=\left(\begin{array}{llll}\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \overrightarrow{u_{3}} & \overrightarrow{u_{4}}\end{array}\right)$
$\overrightarrow{u_{1}}=\frac{1}{\sigma_{1}} A \overrightarrow{v_{1}}=\frac{1}{3}\left(\begin{array}{c}0 \\ -3 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right)$
$\overrightarrow{u_{2}}=\frac{1}{\sigma_{2}} A \overrightarrow{v_{2}}=\frac{1}{2}\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
Here we can take:

$$
\begin{aligned}
& \overrightarrow{u_{3}}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \overrightarrow{\mathrm{u}_{4}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& U=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and: $A=U \Sigma V^{T}$
with U, Σ, V defined above.
Ex. 3
Construct the singular value decomposition of
$A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
(It has rank 1.)

$$
\begin{aligned}
\frac{1^{\text {st. }}: \sum}{A^{T} A}= & \left(\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 2 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right)=\left(\begin{array}{cc}
9 & -9 \\
-9 & 9
\end{array}\right) \\
& \rightarrow \sigma_{1}=3 \sqrt{2} \\
& \Rightarrow \Sigma=\left(\begin{array}{cc}
3 \sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$\underline{2}^{\text {nd }}: V$
$\lambda_{1}=18: A^{T} A-18 I=\left(\begin{array}{cc}-9 & -9 \\ -9 & -9\end{array}\right) \overrightarrow{v_{1}}=\frac{1}{\sqrt{2}}\binom{1}{-1}$
$\lambda_{2}=0$: by orthogonality: $\overrightarrow{v_{1}}=\frac{1}{\sqrt{2}}\binom{1}{1}$

$$
\rightarrow V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

$3^{\text {rd. }}: U$

$$
\begin{aligned}
U= & \left(\begin{array}{lll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \overrightarrow{u_{3}}
\end{array}\right) \\
& \overrightarrow{u_{1}}=\frac{1}{\sigma_{1}} A \overrightarrow{v_{1}}=\frac{1}{3 \sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-1} \frac{1}{6}\left(\begin{array}{c}
2 \\
-4 \\
4
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)
\end{aligned}
$$

Here we know $\overrightarrow{u_{2}}, \overrightarrow{u_{3}}$ are orthogonal to $\overrightarrow{u_{1}}$:

$$
\begin{aligned}
& \vec{x} \in \operatorname{Null}(1-2 \quad 2) \\
& \vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lr}
2 x_{1}-2 x_{1} \\
x_{2} & x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \\
& \text { Problem: }\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \text { and }\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \text { are not orthogonal } \\
& \rightarrow \text { Gram-Schmidt } \\
& \overrightarrow{u_{2}}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \\
& \overrightarrow{u_{3}}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)-\frac{\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)}{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)+\frac{4}{5}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \\
& \rightarrow \overrightarrow{u_{3}}=\frac{1}{5}\left(\begin{array}{c}
-2 \\
4 \\
5
\end{array}\right) \\
& \rightarrow U=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & -2 / 3 \sqrt{5} \\
-2 / 3 & 1 / \sqrt{5} & 4 / 3 \sqrt{5} \\
2 / 3 & 0 & 5 / 3 \sqrt{5}
\end{array}\right) \\
& \Rightarrow A=U \Sigma V^{T} \\
& \text { with } U, \Sigma, V \text { defined above. }
\end{aligned}
$$

Applications of the SVD
The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the first four).

- Estimating the rank and condition number of a matrix
- Constructing bases for the four fundamental spaces
- Computing the pseudoinverse of a matrix
- Linear least squares problems
- Non-linear least-squares

Normal Equations: $A^{T} A \vec{x}=A^{T} \vec{b}$

$$
\begin{aligned}
& \text { if } A=U \Sigma V^{T} \\
& A^{T} A=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma^{T} U^{T} U \Sigma V^{T}=V\left(\begin{array}{lll}
\\
{\overrightarrow{v_{1}}}^{2} & \ddots & \\
& \ddots & \\
& & \underbrace{T}
\end{array}\right) .
\end{aligned}
$$

The Condition Number of a Matrix

If A is an invertible $n \times n$ matrix, the ratio
$\frac{\sigma_{1}}{\sigma_{n}}$
is the condition number of A

Note that:

- The condition number of a matrix describes the sensitivity of a solution to $A \vec{x}=\vec{b}$ is to errors in A.
- We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course.

Ex. 4
For $A=U \Sigma V^{*}$ determines the rank of A, and orthonormal bases for $\operatorname{Null}(A)$ andC(ol $\left.(A)^{\perp}\right)$
$U=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0\end{array}\right]$
$\Sigma=\left[\begin{array}{ccccc}4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$V^{T}=\left[\begin{array}{cccccc}0 & 1 & & 0 & 0 & 0 \\ 0 & 0 & & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2}\end{array}\right]$
$\operatorname{Rank}(A)=3\left(r_{1}, r_{2}, r_{3} \neq 0\right)$
$\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right\}$ basis for $\left.\operatorname{Col}(A)\right)$
$\left\{\overrightarrow{u_{4}}\right\}=\left\{\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right)\right\}$ is an orthogonal bassi forc(ol $\left.(A)^{\perp}\right)=\operatorname{Null}\left(A^{T}\right)$
Rank Theorem: $\operatorname{dim} \operatorname{Null}(A)=2$
We know: $A \mid \overrightarrow{v_{1}} \# \overrightarrow{v_{1}}$

$$
\Rightarrow\left\{\overrightarrow{v_{4}}, \overrightarrow{v_{5}}\right\} \text { is an orthonormal basis for } \operatorname{Null}(A)
$$

$\left\{\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-\sqrt{0.8} \\ 0 \\ 0 \\ \sqrt{0.2}\end{array}\right)\right\}$

The Four Fundamental Spaces

1. $A \overrightarrow{v_{s}}=\sigma_{s} \overrightarrow{u_{S}}$
2. $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ is an orthonormal basis for $\operatorname{Row}(A)$
3. $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{r}}$ is an orthonormal basis for $\operatorname{Col}(A)$
4. $\overrightarrow{v_{r+1}}, \ldots, \overrightarrow{v_{n}}$ is an orthonormal basis for $\operatorname{Null}(A)$
5. $\overrightarrow{u_{r+1}}, \ldots, \overrightarrow{u_{n}}$ is an orthonormal basis for $\operatorname{Null}\left(A^{T}\right)$
$U=\left(\begin{array}{cccc}\begin{array}{llll}\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{r}} \\ \text { orthonormal basis for } \operatorname{Col}(A)\end{array} & \underbrace{\overrightarrow{u_{r+1}}}_{\text {orthonormal basis for } \operatorname{Null}\left(A^{T}\right)} \quad \cdots & \overrightarrow{u_{m}}\end{array}\right)$
$V=\left(\begin{array}{lll}\left.\begin{array}{llll}\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{r}} \\ \text { orthonormal basis for } \operatorname{Row}(A) & \underbrace{\overrightarrow{v_{r+1}}}_{\text {orthonormal basis for } \operatorname{Null}(A)} \cdots\end{array}\right)\end{array}\right.$

The Spectral Decomposition of a Matrix
The SVD can also be used to construct the spectral decomposition for any matrix with rank r

$$
A=\sum_{s=1}^{r} \sigma_{s}{\overrightarrow{u_{s}}{\overrightarrow{u_{s}}}^{T}}^{T}
$$

Where $\overrightarrow{u_{s}}, \overrightarrow{u_{s}}$ are the s ${ }^{\text {th }}$ columns of U and V respectively.
For the case when $A=A^{T}$, we obtain the same spectral decomposition that we encountered in Section 7.2. \rightarrow Check that it works with Examples 2 and 3.

Studio 24

Thursday, December 2, 2021 12:36 PM

SVD

$A=U \Sigma V^{T}$
U,V: orthogonal
Σ : diagonal with non - increasing entries
A: $m \times n$
$\Sigma: m \times m$
$V: n \times n$
if $A=U \Sigma V^{T}$
\Rightarrow columns of V are the ortthonormal set of eigenvectors (in decreasing order of eigenvalues)

Worksheet 7.4, The Singular Value Decomposition

Worksheet Exercises

1. Indicate whether the statements are true or false.
a. Every matrix has a singular value decomposition
i. True
b. If A is symmetric, then its factorization $A=U D U^{T}$ is also its $S V D$.
i. True if entries in D are non-increasing $(U=V)$
c. The maximum value of $A \mid \vec{x}\left\{\|\right.$ bject tod $\|=1$ is σ_{1}.
i. $A \vec{x}^{2}\left\|=U \mid \Sigma V^{T} \vec{x}^{2}\right\|$

$$
\begin{aligned}
& =\vec{x}^{T} A^{T} A \vec{x}=Q(\vec{x}) \\
& \max Q(\vec{x})=\lambda_{\max }\left(A^{T} A\right)=\sigma_{1}{ }^{2}, \text { for } \vec{x} 1
\end{aligned}
$$

ii. True

$$
\Rightarrow \max \nmid \vec{x} \# \sigma_{1}, \text { for } \vec{x} \| 1
$$

2. Construct the SVD of

$$
A=\left[\begin{array}{cc}
4 & -2 \\
2 & -1 \\
0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{cc}
20 & -10 \\
-10 & 5
\end{array}\right] \\
& p(\lambda)=(20-\lambda)(5-\lambda)-100=\lambda^{2}-25 \lambda=\lambda(\lambda-25) \\
& \lambda=0:\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { eigenvector } \\
& \lambda=25: A^{T} A-25 I=\left[\begin{array}{cc}
-5 & -10 \\
-10 & -20
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \text { eigenvector }
$$

$$
V=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right], \quad \sigma_{1}=5, \quad \sigma_{2}=0
$$

$$
\Rightarrow \Sigma=\left[\begin{array}{ll}
5 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{5}\left[\begin{array}{c}
-\frac{10}{\sqrt{5}} \\
-\frac{5}{\sqrt{5}} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} \\
0
\end{array}\right]
$$

$$
u_{2}=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Rightarrow U=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]
$$

3. Find a unit vector \vec{x} for which $A \vec{x}$ has maximum length
4. By inspection, construct an SVD of the diagonal matrix

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
& A^{T} A=\left[\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right]
\end{aligned}
$$

Eigenvalue of 4: $\pm\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Eigenvalue of $9: \pm\left[\begin{array}{l}0 \\ 1\end{array}\right]$
The SVD of a matrix is not unique: how many different SVDs can you create from the matrix above?
5. Written Explanation Exercise Let A be an $m \times n$ matrix of rank r. If r is much smaller than m and n, explain how the following version of the singular value decomposition

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -1 \\
2 & 2
\end{array}\right] \\
& A^{T} A=\left[\begin{array}{ll}
8 & 2 \\
2 & 5
\end{array}\right] \\
& p(\lambda)=(8-\lambda)(5-\lambda)-4=\lambda^{2}-13 \lambda+36=(\lambda-9)(\lambda-4) \\
& \Rightarrow \lambda_{\text {max }}\left(A^{T} A\right)=9 \\
& A^{T} A-9 I=\left[\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right] \Rightarrow \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \left\|\left[\begin{array}{cc}
2 & -1 \\
2 & 2
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\|=\frac{1}{\sqrt{5}}\left\|\left[\begin{array}{l}
3 \\
6
\end{array}\right]\right\|=\frac{\sqrt{45}}{\sqrt{5}}=3=\sigma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A^{T} A=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \quad \underbrace{\Sigma^{T} \Sigma} \quad V^{T} \text { : orthogonal diagonalization of } A^{T} A \\
& \left(\begin{array}{lll}
{\overrightarrow{v_{1}}}^{2} & & \\
& \ddots & \\
& & \overrightarrow{v_{n}}
\end{array}\right)
\end{aligned}
$$

[^0]: $\rightarrow X_{3}=-1$
 \rightarrow by substitution: $X_{2}=0, X_{1}=1$

