
Hello everyone! My name is Gregory Elias. I was a student in MATH 1554 for the fall 2021 semester.

I realized early on that MATH 1554 was really fast paced and it was hard to keep track of class notes. That's why I painstakingly wrote all of my 
professor's lecture notes and all studio worksheet questions & answers in a OneNote/LaTeX format and compiled them into a PDF so that you -
the reader - never miss material from any lecture or studio.

Enjoy!

If you have any questions, email me at: elias.gregory.w@gmail.com or gelias7@gatech.edu

P.S. Great power comes great responsibility. Don’tÊuseÊthisÊasÊanÊalternativeÊofÊattendingÊlecture,Êit'sÊreallyÊimportantÊthatÊyouÊdoÊso,ÊespeciallyÊinÊ
thisÊclass!
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Material Covered:
Chapter 1: Linear Equations in Linear Algebra

Section 1.1 : Systems of Linear Equations•
Section 1.2 : Row Reduction and Echelon Forms•
Section 1.3 : Vector Equations•
Section 1.4 : The Matrix Equation•
Section 1.5 : Solution Sets of Linear Systems•
Section 1.7 : Linear Independence•
Section 1.8 : An Introduction to Linear Transforms•
Section 1.9 : Linear Transforms•

Chapter 2: Matrix Algebra
Section 2.1 : Matrix Operations•
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General Information:
Professor: Victor Vilaça Da Rocha

School Email: vrocha3@gatech.edu○
Personal Email: v.vilaca.da.rocha@gmail.com○

•

Use MyLab for assignments and textbook•

Notes:

Section 1.1: Systems of Linear Equations
Linear Equations:

A linear equation has the form:
A1X1 + A2X2 + … + AnXn = b

A1 … An are coefficients
X1 … Xn are variables
"n" is the dimension

○
•

Examples:
In 2D: 6x1 + 4x2 = 5

A line in 2D
○

In 3D 9x1 + 7x2 + 2x3 = 8
A plane in 3D

○

*Non linear equations:
X1

2 + X2
7 = 4

ln(x) + 1/x + x143 = ex
4x1x2 = 3

○

•

Systems of Linear Equations:
A system of linear equations have more than one equation. For example:

X1 + 1.5x2 + 𝜋x3 = 4○
5X1 +            7x3 = 5○

•

A system can have a unique solution, no solution, or an infinite number of solutions.
Two lines that intersect have one solution○
Two parallel lines that have different heights have no solution○
Two parallel lines that have the same height have infinitely many solutions.○

•

A equation A1X1 + A2X2 + A3X3 = b defines a plane in ℝ3.
The solution to a system of 3 equations is the set of intersections of the planes.○

•

Row Reduction by Elementary Row Operations:
(Replacement/Addition) Add a multiple of one row to another1.
(Interchange) Interchange two rows2.
(Scaling) Multiply a row by a non-zero scalar3.

Example:

X1 - 2X2 +     X3 = 0 R1

2X2 −   8X3 = 8 R2

5X1 −   5X3 = 10 R3

X1 −  7X3 = 8 R3 ← R2 + R1

2X2 −  8X3 = 8 ~

X1 −    X3 = 2 R3 ← ⁄ R3

X1 −   7X3 = 8 R3 ← R3 - R1

X2 −   4X3 = 4 ~

6X3 = -6 R2 ← ⁄ R2

→ X3 = -1
→ by substitution: X2 = 0, X1 = 1
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TA: Jad Salem
Email: Jsalem7@gatech.edu•
Office Hours: ?•

Def. A system of equations is consistent if there is at least 1 solution

No solutions:

X + Y = 1 Inconsistent

X + Y = 2 Sol: UND

One Solution:

2X + 4Y = 2 Consistent

3X + 4Y = 2 Sol: x = 0, y = 0.5

Infinite Solutions:

X + Y = 1 Consistent

2X + 2Y = 2 Sol: y = 1 - x

Studio 1
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Notes:

Augmented Matrices
It is redundant to write x1, x2, x3 again and again, so we rewrite systems using matrices. For example, 

x1 − 2x2 +   x3 = 0
2x2 − 8x3 = 8

5x1 −          5x3 = 10
can be written as the augmented matrix, 

1 −2 1
0 2 −8
5 0 −5

0
8

10

The vertical line reminds us that the first three columns are the coefficients to our variables x1, x2, and x3.

Consistent Systems and Row Equivalence
Definition (Consistent)

A linear system is consistent if it has at least one solution.•

Definition (Row Equivalence)
Two matrices are row equivalent if a sequence of elementary row operations transforms one matrix into the other.•

Note: if the augmented matrices of two linear systems are row equivalent, then they have the same solution set. 

Fundamental Questions
Two questions that we will revisit many times throughout our course.

Does a given linear system have a solution? (Is consistent)1.
If it is consistent, is the solution unique?2.
How do you find the solutions?3.

Section 1.2: Row Reduction and Echelon Forms
A rectangular matrix is in echelon form if

All zero rows (if any are present) are at the bottom.1.
The first non-zero entry (or leading entry) of a row is to the right of any leading entries in the row above it (if any).2.
All elements below a leading entry (if any) are zero.3.

A matrix in echelon form is in row reduced echelon form (RREF) if
All leading entries, if any, are equal to 1.1.
Leading entries are the only nonzero entry in their respective column.2.

A = 2 0
3 0

Is not in Echelon Form.

B = 0 𝜋
0 0

Is in Echelon Form.

C = 0 0
0 1

Is not in Echelon Form.

D = 1 0
0 1

Is in (Row Reduced) Echelon Form

Example of a Matrix in Echelon Form

⎝

⎜
⎛

0 ∎ ∗
0 0 0

∗ ∗ ∗
∎ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗
∗

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 ∎ ∗
0 0 ∎
0 0 0

∗
∗
∗⎠

⎟
⎞

To be in RREF:
∎ = 11.
Everything above ∎ must be 0.2.

Example of RREF:

A = 
1 0
0 2

EF

B = 
0 0
0 0

RREF

C = 

0
1
0
0

(NO)

D = [0 6 3 0] EF

E = 
1 17 0
0 0 1

RREF

Definition: Pivot Position, Pivot Column 
A pivot position in a matrix 𝐴 is a location in 𝐴 that corresponds to a leading 1 in the reduced echelon form of 𝐴.•
A pivot column is a column of 𝐴 that contains a pivot position.•

Example 2: Express the matrix in row reduced echelon form and identify the pivot columns. 
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0 −3 −6
−1 −2 −1
−2 −3 0

4
3
3

R1, R2, R3

−2 −3 0
−1 −2 −1
0 −3 −6

3
3
4

R1 ↔ R3

−2 −3 0
0 −1 −2
0 −3 −6

3
3
4

R2 ← 2R2 − R1

−2 −3 0
0 −1 −2
0 0 0

3
3

−5

R3 ← R3 − 3R1

Row Reduction Algorithm
The algorithm we used in the previous example produces a matrix in RREF.•

Step 1a: Swap the 1st row with a lower one so the leftmost nonzero entry is in the 1st row

Step 1b: Scale the 1st row so that its leading entry is equal to 1

Step 1c: Use row replacement so all entries below this 1 are 0

Step 2a: Swap the 2nd row with a lower one so that the leftmost nonzero entry below 1st row is in the 2nd row 

etc. . . . Now the matrix is in echelon form, with leading entries equal to 1.

Last step: Use row replacement so all entries above each leading entry are 0, starting from the right. 



General Information:
Office hours: 4-5 Tuesday (MathLab)

Notes:

x + 3y = 2
3x + 2y = 1

1 3 2
3 2 1

= Augmented Matrix

1 3
3 2

= Coefficient Matrix

Pivot: The first non-zero entry in a row.

Worksheet 1.2

1a.) What are some of the differences between echelon form and row reduced echelon form ((RREF)? List at least three.
All pivots = 1 in RREF1.
Pivots are the only nonzero entry in a column in RREF2.
RREF is unique3.

1b.) How can we use row reduced to determine whether an augmented matrix corresponds to a consistent system?
Reduce to RREF & if there is a pivot in the rightmost column (in an augment matrix), it is inconsistent.1.

2.) Which matrices are in RREF? In echelon form?

A = (0 1 2 3) {RREF}

B = 
1 0
0 1
0 0

0 2
4 0
0 1

{EF}

C = 0 1
0 0

0 1
5 5

{EF}

3.) List all  3 × 2 matricies in RREF. Use * for entries that can be arbitrary.

1 0
0 1
0 0

0 0
0 0
0 0

1 ∗
0 0
0 0

0 1
0 0
0 0

4.) Indicate whether the statements are true or false
a.) A linear system, whose 3 × 5 coefficient matrix has three pivotal columns, must be consistent

True, every row has a pivot
b.) The echelon form of a coefficient matrix is unique

False, only row reduced echelon form is unique; there are infinitely many echelon forms of a singular matrix.

5.) For any three distinct points in the plane, no two on a vertical line, there is a second degree polynomial p(t) = a0 + a1t + a2t2 that passes 
through (1,12), (2,15), and (3,17). That is, solve

p(1) = 12 = a0 + a1 + a2

p(2) = 15 = a0 + 2a1 + 4a2

p(3) = 16 = a0 + 3a1 + 9a2

1 1 1
1 2 4
1 3 9

12
15
16

R1, R2, R3

1 1 1
0 1 3
0 2 8

12
3
4

R2 − R1

R3 − R1

1 0 −2
0 1 3
0 0 2

9
3

−2

−(1/2R3)
−R3 − R2

2R3 + R1

1 0 0
0 1 0
0 0 1

7
6

−1

R1 − R2

R3 − 2R2

1 0 0
0 1 0
0 0 1

7
6

−1

A0 = 7
A1 = 6
A2 = −1
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General Information:
Label pages in homework/exploration•

Notes:

Basic and Free Variables
Consider the augmented matrix

A | �⃗� = 
1 3 0
0 0 1
0 0 0

7 0
4 0
0 1

4
5
6

The leading one's are in first, third, and fifth columns. So:
The pivot variables of the system 𝐴�⃗� = �⃗� are x1, x3, and x5.•
The free variables are x2 and x4. Any choice of the free variables leads to a solution of the system.•

Note that 𝐴 does not have basic or free variables. Systems have variables.

Existence and Uniqueness
A linear system is consistent if and only if (exactly when) the last column of the augmented matrix does not have a pivot. In other words, the 
RREF of the augmented matrix does not have the form:

(0 0 0 … 0 | 1)

Moreover, if a linear system is consistent, then it has
a unique solution if and only if there are no free variables.1.
infinitely many solutions that are parameterized by free variables.2.

Section 1.3: Vector Equations

Think about the algebra in linear algebra.
To do this, we need to introduce n-dimensional space ℝn, and vectors inside it.•

ℝ1 is a number line.

ℝ2 is a plane.

Example:

𝑝 = (3, 2)

�⃗� =
3

2

Vectors
Also think about ℝn as vectors, with given length and direction•

Vector Algebra
Ex.-

𝑢 =
𝑢

𝑢
, �⃗� =

𝑣

𝑣

Scalar Multiple:

𝑐𝑢 =
𝑐𝑢

𝑐𝑢

1.

Vector Multiple:

𝑢 + �⃗� =
𝑢 + 𝑣

𝑢 + 𝑣

2.

Pentagon Rule
Two vectors added together will be the length of the line that connects the beginning of the first vector and the end of the second 
vector.

3.

Linear Combinations and Span
Given vectors 𝑣⃗, 𝑣⃗, … 𝑣⃗ ∈ ℝn, and scalars 𝑐 , 𝑐 , … 𝑐 the vector below

�⃗� = 𝑐 𝑣⃗ + 𝑐 𝑣⃗ + 𝑐 𝑣⃗

1.

is called a linear combination of 𝑣⃗, 𝑣⃗, … 𝑣⃗ with weights 𝑐 , 𝑐 , … 𝑐 .

The set of all linear combinations of 𝑣⃗, 𝑣⃗, … 𝑣⃗ is called the Span of 𝑐 , 𝑐 , … 𝑐 .2.

Geometric Interpretation of Linear Combinations
Ex.-

Is �⃗� the span of vectors v⃗ and v⃗?

𝑣⃗ =
1

−2
−3

, 𝑣⃗ =
2
5
6

, and �⃗� =
7
4

15
.
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Solution:
�⃗� is in the span of vectors v⃗ and v⃗ if there exists two constants 𝑐 , 𝑐 such that

�⃗� = 𝑐 𝑣⃗ + 𝑐 𝑣⃗

𝑐 +
−2𝑐 +
−3𝑐 +

2𝑐 =
5𝑐 =
6𝑐 =

7
4

15

*Make sure to write "R1, R2, R3" because the grader will know where you might have went wrong.

1 2
−2 5
−3 6

7
4

15

R2 ← R2 + 2R1

~
R3 ← R3 + 3R1

1 2
0 9
0 12

7
18
36

Since c = 2 for R2 and c = 3 for R3, the system is inconsistent.

∴ �⃗� is not in the span of vectors v⃗ and v⃗
�⃗� ∉ (v⃗ , v⃗)

The Span of two Vectors in ℝn

In general: Any two non-parallel vectors in ℝ3 span a plane that passesthrough the origin.  Any vector in that plane is also in the span of the 
twovectors.

Vectors
In general: Any two non-parallel vectors in ℝ3 span a plane that passesthrough the origin.  Any vector in that plane is also in the span of 
the two vectors.

•



General Information:
Quiz on Thursday (mainly on 1.1, 1.2, 1.3)

11am - 7pm (15min)○
•

Notes:

Section 1.4: The Matrix Equation

Notation

Symbol Meaning

∈ Belongs to

ℝ The set of vector with n real-valued elements

ℝ × The set of real-valued matricies with m rows and n columns

Ex.1      
𝟏
𝟐
𝟑

∈ ℝ𝟑

Ex.2      𝟏 𝟑
𝟐 𝟒

𝟏 𝟐
𝟓 𝟔

∈ ℝ𝟐×𝟒

Ex.3       ℝ𝟑×𝟏 = ℝ𝟑

Linear Combinations
𝐴 is a m×n matrix with columns �⃗� , … �⃗� and 𝑥 ∈ ℝ , then the matrix vector product 𝐴�⃗� is a linear equation of the columbs of 𝐴.

| | ⋯

�⃗� �⃗� ⋯
| | ⋯

|

�⃗�
|

𝑥
𝑥
⋮

𝑥

= 𝑥 𝑎⃗ + 𝑥 𝑎⃗ + ⋯ + 𝑥 𝑎 ⃗

Note that 𝐴�⃗� is in the span of the columns of 𝐴.•

Ex.

1 0 −1
0 −3 3

4
3
2

= 4
1
0
+ 3

0
−3

+ 7
−1
3

=
−3
12

Solution Sets
If 𝐴 is a m×n , matrix with columns �⃗� , … �⃗� and 𝑥 ∈ ℝ , then the solutions to 

A�⃗� = �⃗�
has the same set of solutions as the vector equation

x 𝑎⃗ + ⋯ + 𝑥 𝑎 ⃗ = �⃗�
which has the same set of solutions as the set of linear equations with the augmented matrix

𝑎⃗ 𝑎⃗ ⋯ 𝑎 ⃗ �⃗�

Existence of Solutions
The equation A�⃗� = �⃗� has a solution if and only if �⃗� is a linear combination of the colums of 𝐴.

A�⃗� = x 𝑎⃗ + ⋯ + 𝑥 𝑎 ⃗
Ex.

For what vectors �⃗� =

𝑏
𝑏
𝑏

does the equation have a solution?

1 3 4
2 8 4
0 −1 2

𝑏
𝑏
𝑏

R2 ← R2 − 2R1

~
1 3 4
0 2 −4
0 −1 2

𝑏
𝑏
𝑏

− 2𝑏

R3 ← R3 − R2 1 3 4
0 2 −4
0 0 0

𝑏
𝑏 2𝑏

2𝑏 − 𝑏 + 2𝑏

The system is consistent if and only if 

2𝑏 − 𝑏 + 2𝑏 = 0 (2 −1 2 | 0)

or 𝑏 = 1
2 𝑏 − 𝑏

The system is consistent iff �⃗� =

𝑏
𝑏
𝑏

=

⁄ 𝑏 − 𝑏
𝑏
𝑏

= 𝑏
⁄
1
0

+ 𝑏
−1
0
1

The Raw Vector Rule for Computing A�⃗�

1 0
0 1

2 0
0 2

𝑥
𝑥
𝑥
𝑥

= R ⃗ �⃗� R ⃗ �⃗�

= 𝑥
1
0
+ 𝑥

0
1
+ 𝑥

2
0
+ 𝑥

0
2

= 
𝑥

𝑥
2𝑥

2𝑥

Summary
We now have four equivalent ways of expressing linear systems

1.1 A system of equations:
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2𝑥 + 3𝑥 = 7
𝑥 − 𝑥 = 5

1.2 An augmented matrix:
2 3
1 −1

7
5

1.3 A vector equation:

𝑥
2
1
+ 𝑥

3
−1

=
7
5

1.4 As a matrix equation:
2 3
1 −1

𝑥
𝑥 =

7
5

Each representation gives us a different way to think about linear systems



General Information:
TA Office Hours: 4-5pm today

Link on canvas-

Definition:
𝑢 is a linear combination of
�⃗� , … �⃗� if 
𝑢 = 𝑐 𝑛⃗ + ⋯ + 𝑐 𝑣⃗
For some 𝑐 , ⋯ , 𝑐 ∈ ℝ

Worksheet 1.3 and 1.4, Vector Equation and The Matrix Equation

Written Explanation Exercise
What does the span of a set of vectors represent?

All linear combinations of a set of vectors.i.
a.

How do we determine whetehr a vector is in the span of a set of vectors?
Determine whether the augmented matrix of 𝑣⃗ 𝑣⃗ 𝑣⃗ �⃗� is consistent.i.

b.

1.

Indicate whether the statements are true or false.
If the equation A�⃗� = �⃗� is consistent, then �⃗� is not in the set spanned by the columns of 𝐴.

Truei.
a.

If the augmented matrix [𝐴 �⃗�] has a pivot position in every row, then the equation A�⃗� = �⃗� must be consistent.
Truei.

b.

There are exactly three vectors in Span{𝑎⃗ 𝑎⃗ 𝑎⃗}

False. There can only be 0 or ∞ vectors in a span.i.
c.

2.

Span{𝑣⃗ 𝑣⃗} is equal to which of the expressions below?

Span{𝑣⃗ 𝑣⃗ 3𝑣⃗} Equala.

Span{𝑣⃗ 3𝑣⃗} Not Equalb.

Span{𝑣⃗ 𝑣⃗ 3𝑣⃗ + 2𝑣⃗} Equalc.

3.

For what values of ℎ is �⃗� in the plane spanned by 𝑎⃗ and 𝑎⃗?

𝑎⃗ =
1
4

−1
𝑎⃗ =

−6
−17

2
�⃗� =

4
2
ℎ

1 −6
4 −17

−1 2

4
2
ℎ

R2 ← R2 − 4R1

~
R3 ← R3 + R1

1 −6
0 7
0 −4

4
−14

ℎ + 4
i.

Now we know that 𝑥 = −2. Hence, ℎ = 4ii.

a.

4.

Sketch the span of the columns of the matrix 𝐴 =
2 −1 3
4 −2 6

5.
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General Information:
Quiz on Thursday•

Notes:

Section 1.5: Solution Sets of Linear Systems

Homogenous Systems
Linear systems of the form A�⃗� = 0⃗ are homogeneous
Linear systems of the form A�⃗� ≠ 0⃗ are inhomogeneous

Because homogeneous systems always have the trivial solution, �⃗� = 0⃗, the interesting question is whether they have non-trivial solutions.

Observation
A�⃗� = 0⃗ has a nontrivial solution

⟺ there is a free variable
⟺ A has a column with no pivot

Ex.
x1 + 3x2 + x3 = 0

2x1 − x2 − 5x3 = 0
x1 − 2x3 = 0

1 3 1
2 −1 −5
1 0 −2

0
0
0

R2 ← R2 − 2R1

~
1 3 1
2 −7 −7
0 −3 −3

0
0
0

~
1 3 1
2 −7 −7
0 −3 −3

0
0
0

R1 ← R1 − 3R2

~
RREF →

1 3 1
2 −7 −7
0 −3 −3

0
0
0

Solution x3: free, x1 = 2x3, x2 = −x3

∴ �⃗� is a solution if and only if:

�⃗� =
𝑥
𝑥
𝑥

=
2𝑥
−𝑥
𝑥

=
2

−1
1

≫ 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒

Parametric Forms, Homogeneous Case
In the example on the previous slide we expressed the solution to a system using a vector equation. This is a parametric form of the 
solution.

In general, suppose the free variables for A�⃗� = 0⃗ are x , … x . Then all solutions to A�⃗� = 0⃗ can be written as
�⃗� = 𝑥 𝑣 ⃗ + 𝑥 𝑣 ⃗ + ⋯ + 𝑥 𝑣⃗

For some �⃗� , … �⃗� . This is a parametric form of the solution.

Ex.1 �⃗� ∈ ℝ
x1, x2: pivot variables
X3, x4, x5: free variables

�⃗� =

⎝

⎜
⎛

𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑑𝑥 𝑒𝑥 𝑓𝑥

𝑥
𝑥

𝑥 ⎠

⎟
⎞

= 𝑥

⎝

⎜
⎛

𝑎
𝑑
1
0
0⎠

⎟
⎞

+ 𝑥

⎝

⎜
⎛

𝑏
𝑒
0
1
0⎠

⎟
⎞

+ 𝑥

⎝

⎜
⎛

𝑐
𝑓
0
0
1⎠

⎟
⎞

Ex.2 (non-homogeneous system)
x1 + 3x2 + x3 = 9

2x1 − x2 − 5x3 = 11
x1 − 2x3 = 6

1 3 1
2 −1 −5
1 0 −2

5
11
6

R2 ← R2 − 2R1

~
R3 ← R3 − R1

1 3 1
0 −7 −7
0 −3 −3

5
−7
−3

~
1 3 1
0 1 1
0 0 0

5
1
0

R1 ← R1 − 3R2

~
RREF →

1 0 −2
0 1 1
0 0 0

6
1
0

Solutions:

�⃗� =
𝑥
𝑥
𝑥

=
6 + 2𝑥
1 − 𝑥

𝑥
=

6
1
0

+ 𝑥
2

−1
1

We found that:
�⃗� = 𝑥 ⃗ + 𝑥⃗ ≫ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 A�⃗� = 0⃗

Take �⃗� another solution A�⃗� = �⃗�

A�⃗� − 𝑥 =⃗ 𝐴�⃗� + 𝐴𝑥 ⃗

= �⃗� − �⃗�

⇒�⃗� − 𝑥 �⃗�𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 A�⃗� = 0⃗
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General Information:
Def. The solution set of A�⃗� = �⃗� is the set of all �⃗� such that A�⃗� = �⃗�

If 𝐴 is 𝑚 × 𝑛, then solution set �⃗� ∈ ℝ A�⃗� = �⃗�

Def. A homogeneous system is a system of equation of form A�⃗� = �⃗�

A = 1 0 4
0 2 −10

What is the solution set of A�⃗� = 0⃗?

A = 1 0 4
0 1 −5

X1 + 4x3 = 0
X2 − 5x3 = 0

𝑥 = −4𝑥
𝑥 = 5𝑥
𝑥 = 𝑥

𝑥
𝑥
𝑥

= 𝑥
−4
5
1

⟹ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑖𝑠 𝑥
−4
5
1

𝑥 ∈ ℝ

Worksheet 1.5, Solution Sets of Linear Systems
Written Explanation Exercise

When a homogeneous system has a nontrivial solution, what properties does that system have? List at least two.
Column with no pivots (at least 1 free variable)i.
Includes the zero vectorii.

a.
1.

Indicate whether the statements are true or false
A non-trivial solution �⃗� to A�⃗� = 0⃗ has all non-zero entries.

Falsei.
a.

If A�⃗� = �⃗� and A�⃗� = �⃗�, then A(�⃗� − �⃗�) = 0⃗
Truei.

b.

Any 3 × 2 matrix 𝐴 with two pivotal positions has a non-trivial solution to A�⃗� = 0⃗
Falsei.

c.

2.

Example Construction

Give an example of a non-zero 2 × 3 matrix 𝐴 such that �⃗� =
1
2
1

is a solution to A�⃗� = 0⃗

1 −1 1
2 −2 2

i.

a.

Give an example of a non-trivial solution to A�⃗� = 0⃗, where A =
2 5
0 0
4 10

2.5
−1

i.

b.

3.

Express the solution to A�⃗� = 0⃗ in the parametric vector form, where A = 1 3
0 0

4 1
1 1

A = 1 3
0 0

4 1
1 1

0
0

R1 ← R1 − 4R2 1 3
0 0

0 −3
1 1

0
0

i.

x1 + 3x2 − 3x4 = 0ii.
x1 = 3x2 + 3x4iii.
x3 + x4 = 0iv.
x3 − x4 = 0v.

⇒ �⃗� =

−3𝑥 + 3𝑥
𝑥

−𝑥
𝑥

= 𝑥⃗

−3
1
0
0

= 𝑥⃗

3
0

−1
1

vi.

4.
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Notes:

Section 1.7: Linear Independence

Linear Independence
A set of vectors {𝑣⃗, … , 𝑣 ⃗} in ℝ are linearly independent if

𝑐 𝑣⃗ = 𝑐 𝑣⃗ + 𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗ = 0⃗ ⇒ 𝑣⃗, … , 𝑣 ⃗ 0⃗

has only the trivial solution. It is heavily dependent otherwise.

In other words, {𝑣⃗, … , 𝑣 ⃗} are linearly dependent if there are real numbers c1, c2, …, ck not all zero so that
𝑐 𝑣⃗ + 𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗ = 0⃗

Consider the vectors 𝑣⃗ , 𝑣⃗, … , 𝑣 ⃗

To determine whether the vectors are linearly independent, we can se the linear combination the zero vector:

𝑐 𝑣⃗ + 𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗ = [𝑣⃗ 𝑣⃗ ⋯ 𝑣 ⃗]

𝑐
𝑐
⋮

𝑐

= 𝑉𝑐 = 0⃗

Linear independence: There is NO non-zero solution 𝑐.
Linear dependence: There is a non-zero solution 𝑐.

Ex.1
For what values of ℎ are the vectors linearly independent?

1
1
ℎ

,   
1
ℎ
1

,   
ℎ
1
1

1 1 ℎ
1 ℎ 1
ℎ 1 1

0
0
0

R2 ← R2 − R1

~
R3 ← R3 − hR1

1 1 ℎ
0 ℎ − 1 1 − ℎ
0 1 − ℎ 1 − ℎ

0
0
0

R3 ← R3 + R2

~
1 1 ℎ
0 ℎ − 1 1 − ℎ
0 0 2 − ℎ − ℎ

0
0
0

The 3 vectors are linearly independent iff ℎ − 1 ≠ 0 ∶ ℎ ≠ 1
ℎ + ℎ − 2 ≠ 0: ℎ ≠ 1, −2

Hence, the 3 vectors are linearly independent iff ℎ ≠ 1, −2

Check:

ℎ = 1 2
1
1
1

−
1
1
1

−
1
1
1

=
0
0
0

ℎ = −2
1
1

−2
+

1
−2
1

+
−2
1
1

=
0
0
0

Suppose �⃗� ∈ ℝ . When is the set {�⃗�} linearly dependent for some c1 ≠ 0.
𝑐 �⃗� = 0⃗ ⟹ �⃗� must be 0⃗

Suppose 𝑣⃗, 𝑣⃗ ∈ ℝ . When is the set {𝑣⃗, 𝑣⃗} linearly dependent? Provide a geometric interpretation.
𝑐 𝑣⃗ + 𝑐 𝑣⃗ = 0⃗ with (𝑐 , 𝑐 ) ≠ (0, 0)

If c1 = 0 or c2 = 0. Say c1 = 0
𝑐 𝑣⃗ = 0⃗ with c2 ≠ 0

𝑣⃗ = 0

1)

If c1 ≠ 0, c2 ≠ 0
𝑣⃗ = − 𝑣⃗: 𝑣⃗ and 𝑣⃗ are parallel.

2)

Two Theorems
Fact 1. Suppose 𝑣⃗, … , 𝑣 ⃗ are vectors ℝ . If k > n then {𝑣⃗, … , 𝑣 ⃗} is linearly dependent.

Ex. 1
0
,

0
𝜋
,

3
47

are linearlyly dependent.

𝑣⃗, … , 𝑣 ⃗

𝑘 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
| 0 𝑛 rows

Fact 2. If any one or more of 𝑣⃗, … , 𝑣⃗ is 0⃗, then {𝑣⃗, … , 𝑣 ⃗} is linearly dependent.

Ex. 

0
0
0
0

,

1
1
1
1

,

2
1
3

42

are linearly dependent. Indeed: 58

0
0
0
0

+ 0

1
1
1
1

+ 0

2
1
3

42

=

0
0
0
0

1.5 Parametric Vector form
x1 = pivot; x2, x3: free

�⃗� =

𝑥
𝑥
𝑥

=
𝑎𝑥 𝑏𝑥
𝑥

𝑥
= 𝑥

𝑎
1
0

+ 𝑥
𝑏
0
1
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Def. A set {𝑣⃗, … , 𝑣 ⃗} is linearly independent if

𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗ = 0⃗
⇓

𝑐 = 𝑐 = ⋯ = 𝑐 = 0

(i.e. {𝑣⃗, … , 𝑣 ⃗} indepdent if 𝑣⃗, … , 𝑣 ⃗ 0⃗only has trivial solution.)

Dependent Set:
1
1
1

,
2
2
2

⟹ −2
1
1
1

+ 1
2
2
2

= 0⃗

0⃗

1
0
1

,
1
1
0

,
2
1
1

⟹ −
1
0
1

−
1
1
0

+
2
1
1

= 0⃗

Independent Set:
1
0
1
0

,
0
1

Worksheet 1.7, Linear Independence
Written Explanation Exercise

How are span and linear dependence related to each other?
If 𝑣⃗ ∈ Span {𝑣⃗, … , 𝑣 ⃗}, then {𝑣⃗, … , 𝑣 ⃗} is dependent

a.

Suppose 𝑇 is a linear map
If 𝑣⃗, … , 𝑣 ⃗ are dependent, why are 𝑇(𝑣 ), … , 𝑇(𝑣 ) depdendent?

Exist c1, …, ck such that
𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗ = 0⃗

Then 0⃗ = 𝑇0⃗

= T(𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗)

= 𝑐 𝑇(𝑣⃗) + ⋯ + 𝑐 𝑇(𝑣 ⃗)

i.

(Think of 𝑇(�⃗�) as 𝐴�⃗�)

If 𝑣⃗, … , 𝑣 ⃗ are independent, need 𝑇(𝑣 ), … , 𝑇(𝑣 ) be independent? 

Take 𝐴 =
0 0
0 0

, 𝑣 =
1
0

, 𝑣 =
0
1

{𝐴𝑣⃗, 𝐴𝑣⃗} dependent

ii.

b.

1.

In the problems below, 𝑣⃗, 𝑣⃗, 𝑣⃗ are three linearly independent vectors in ℝ . Which of the collections of vectors below are linearly 
independent?

𝑣⃗, 𝑣⃗, 0⃗

Dependent
a.

( 𝑣⃗, 𝑣⃗ + 𝑣⃗, 𝑣⃗)

Dependent
b.

( 𝑣⃗, 𝑣⃗ + 𝑣⃗)
Independent

c.

2.

For what values of ℎ are the colums of 𝐴 linearly dependent?

𝐴 =
2 4 −2

−2 −6 2
4 7 ℎ

2 4 −2
−2 −6 2
4 7 ℎ

0
0
0

R1 ← R1

~ 
R2 ← R2 

1 2 −1
−1 −3 1
4 7 ℎ

0
0
0

R2 ← R2 − R1

R3 ← R3 − 4R1

R3 ← R3 + R2

1 2 −1
0 1 0
0 0 ℎ − 4

0
0
0

Hence, ℎ = 4.

3.

A 5 × 3 matrix 𝐴 = [𝑎⃗ 𝑎⃗ 𝑎⃗] has all non-zero columns, and 𝑎⃗ = 5𝑎⃗ + 7𝑎⃗. Identify a non-trivial solution to A�⃗� = 0⃗.
𝐴 = [𝑎⃗ 𝑎⃗ 𝑎⃗]
𝑎⃗ = 5𝑎⃗ + 7𝑎⃗
[𝑎⃗],   [𝑎⃗],    [𝑎⃗]

−5[𝑎⃗] − 7[𝑎⃗] + 1(5[𝑎⃗] + 7[𝑎⃗])

�⃗� =
−5
−7
1

4.

Fill in the blanks.
The columns of a 7 × 3 matrix are linearly independent. How many pivots does the matrix have?

5 pivots
a.

If the columns of a 3 × 7 matrix span ℝ , how many pivots does the matrix have?
3 pivots

b.

5.
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Notes:

Section 1.8: Introduction to Linear Transformations

From Matrices to Functions
Let 𝐴 be a 𝑚 × 𝑛 matrix.  We define a function

𝑇 : ℝ → ℝ

𝑇(�⃗�) = 𝐴�⃗� 𝐴 ∈ ℝ ×

This is called a matrix transformation.
The domain of 𝑇 is ℝ .•
The co-domain of 𝑇 or target 𝑇 is ℝ .•
The vector 𝑇(�⃗�) is the image �⃗� under 𝑇•
The set of all possible images 𝑇(�⃗�) is the range.•

This gives us another interpretation of A�⃗� = �⃗�.
Set of equations•
Augmented matrix•
Matrix equation•
Vector equation•
Linear transformation equation•

Range

𝑇
�⃗� 𝑥𝐴�⃗�

Domain: ℝ Target: ℝ
Co-Domain

"Bad example"
F(x) = x2

Domain: ℝ
Target: ℝ
Range: [0, +∞)

Functions from Calculus
Many of the functions we know have domain and codomain ℝ. We can express the rule that defines the functions in this 
way:

𝑓: ℝ → ℝ 𝑓(𝑥) = sin(𝑥)
Domain: ℝ
Co-domain: ℝ
Range: [−1, 1]

In calculus we often think of a function in terms of its graph, whosehorizontal axis is the domain, and the vertical axis is 
the codomain.

This is ok when the domain and codomain are ℝ.  It’s hard to do when the domain is ℝ and the codomain is ℝ . We 
would need five dimensions to draw that graph.

Ex.1

Let 𝐴 =
1 1
0 1
1 1

, 𝑢 = 3
4

, �⃗� =
7
5
7

𝐷𝑜𝑚𝑎𝑖𝑛: ℝ
𝐶𝑜𝑑𝑜𝑚𝑎𝑖𝑛: ℝ

Compute 𝑇(𝑢) = 𝐴𝑢 =
1 1
0 1
1 1

3
4

=
7
5
7

Calculate �⃗� ∈ ℝ so that  𝑇(�⃗�) = �⃗�

𝑇(�⃗�) =

𝑣 + 𝑣
𝑣

𝑣 + 𝑣
=

7
5
7

By substitution: �⃗� =
2
5

Give a 𝑐 ∈ ℝ so there is no 𝑐 with 𝑇(�⃗�) = 𝑐.
or: Give a 𝑐 that is not in the range of 𝑇.
or: Give a 𝑐 that is not in the span of the columns of 𝐴.

𝑐 =
4
5
6

, 𝑐 =
5
4
8

, 𝑜𝑟 ⋯ (any vector 𝑐 with 𝑐 ≠ 𝑐 )

Range (a.k.a. span of columns): plane in ℝ of equation x1 - x3 or x = z or x1 = x3

Linear transformations
A function 𝑇: ℝ → ℝ is linear if

𝑇(𝑢 + �⃗�) = 𝑇(𝑢) + 𝑇(�⃗�) for all 𝑢, �⃗� in ℝ○

Lecture 7
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𝑇(𝑐�⃗�) = 𝑐𝑇(�⃗�) for all �⃗� ∈ ℝ and 𝑐 in ℝ.○
So if 𝑇 is linear then

𝑇(𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣 ⃗) = 𝑐 𝑇(𝑣⃗) + ⋯ + 𝑐 𝑇(𝑣 ⃗)

This is called the principle of superposition.  The idea is that if we know 𝑇(𝑐 ), … , 𝑇(𝑐 ) then we know every 𝑇(𝑣⃗)

Fact: Every matrix transformation 𝑇 is linear
Fact: 𝑇0⃗ = 𝑇(0�⃗�) = 0𝑇(�⃗�) = 0⃗

𝑒⃗ =

1
0
⋮
0

𝑒⃗ =

⎝

⎜
⎛

0
1
0
⋮
0⎠

⎟
⎞

⋯

In ℝ = 𝑒⃗
1
0
, 𝑒⃗

0
1

𝑇
𝑥
𝑦= 𝑇 𝑥

1
0
+ 𝑦

0
1

= 𝑥𝑇
1
0
+ 𝑦𝑇

0
1

Indeed: 
𝐴(𝑢 + �⃗�) = 𝐴𝑢 + 𝐴�⃗�

𝐴(𝑐𝑢) = 𝑐𝐴𝑢

Ex.2
Suppose 𝑇 is the linear transformation 𝑇(�⃗�) = 𝐴�⃗�. Give a short geometric interpreation of what 𝑇(�⃗�) does to 
vectors in  ℝ . 

1.) 𝐴 =
0 1
1 0

𝑇(�⃗�) =
0 1
1 0

𝑥
𝑥 =

𝑥
𝑥

x2

�⃗� 𝐴�⃗�

𝐴�⃗�

x1

↳ Reflected through the line x1 = x2

2.) 𝐴 =
1 0
0 0

𝑇(�⃗�) =
𝑥
0

x2

�⃗�

x1

𝐴�⃗� ↳ projected	onto	the	y-axis.

3.) 𝐴 =
𝑘 0
0 𝑘

for all 𝑘 ∈ ℝ 𝑇(�⃗�) = 𝑘
𝑥
𝑥 = 𝑘�⃗�

x2

𝑘�⃗�

�⃗�

x1

↳ scaling	by	k.

Ex. 3
What does 𝑇 do to the vector in ℝ ?

𝐴 =
1 0 0
0 1 0
0 0 0

𝑇(�⃗�) =
𝑥
𝑥
0

�⃗�

x1

𝑇(�⃗�)
x2 x3

↳ projecting	by	the	𝑥 − 𝑥 plane.

𝐴 =
1 0 0
0 −1 0
0 0 1

𝑇(�⃗�) =

𝑥
𝑥
𝑥

�⃗�

x1

𝑇(�⃗�)
x2

↳ projecting	by	the	𝑥 − 𝑥 plane.

Ex.4
A linear transformation 𝑇: ℝ ⟼ ℝ satisfies

5



𝑇
1
0

=
5

−7
2

, 𝑇
0
1

=
−3
8
0

What is the matrix that represents 𝑇?

𝐴 =

𝑎 𝑎
𝑎 𝑎
𝑎 𝑎

𝑇
1
0

= 𝐴
1
0

=

𝑎
𝑎
𝑎

=
5

−7
2

𝑇
0
1

= 𝐴
0
1

=

𝑎
𝑎
𝑎

=
−3
8
0

⟹ 𝐴 =
5 −3

−7 8
2 0



Def. A function 𝑇: 𝐴 ⟼ 𝐵 is assignment rule that assings one value 𝑇(𝑎) ∈ 𝐵 to each 𝑎 ∈ 𝐴.
𝐴: Domain
𝐵: Codomain

↱ This is one-to-one
Ex. 𝑓(𝑥) = 𝑥 , 𝑓: [3, 7] → ℝ

↳ Not onto because (e.g. -1) is not hit.

Def. A function  𝑇: 𝐴 ⟼ 𝐵 is onto if for all 𝑏 ∈ 𝐵, there is some element of 𝑎 ∈ 𝐴 such that 𝑇(𝑎) = 𝐵.

Def. A function  𝑇: 𝐴 ⟼ 𝐵 is 1-1 if it passes the horizontal line test. 
𝑇(𝑎 ) = 𝑇(𝑎 ) ⇒ 𝑎 = 𝑎

Worksheet 1.8, An Introduction to Linear Transforms
Suppose 𝑇(𝑥) = 𝐴𝑥 for all 𝑥 where 𝐴 is a matrix amd 𝑇 is onto.

What can we say about pivotal rows of 𝐴?
There is a pivot in every rowi.

a.

What can we say about the existence of solutions to 𝐴𝑥 = 𝑏?
𝐴𝑥 = 𝑏 is consistenti.

b.

1.

Let 𝐴 be an 3 × 4 matrix. What must 𝑐 and 𝑑 be if we define the linear transformation 𝑇: ℝ ⟼ ℝ by 𝑇(�⃗�) = 𝐴�⃗�?
𝑐 = 4
d = 3

2.

Let 𝑇: ℝ ⟼ ℝ be a linear transformation such that

𝑇
𝑥
𝑥 = 𝑥

−1
3

+ 𝑥
4

−1

3.

Construct a matrix 𝐴 so that 𝑇(�⃗�) = 𝐴�⃗� for all vectors �⃗�.

−1 4
3 −1

because [𝑐⃗ ⋯ 𝑐 ⃗]

𝑥
⋮

𝑥
= 𝑥 𝑐⃗ + ⋯ 𝑥 𝑐 ⃗

Let 𝑇: ℝ ⟼ ℝ be a linear transformation such that

𝑇

4
0
1
0

= 𝑇

0
0
1
4

≠ 0⃗

4.

Identify a non-trivial solution �⃗� to 𝑇�⃗� = 0⃗

𝑥 =

4
0
1
0

, 𝑥

0
0
1
4

Know: 𝐴𝑥 = 𝐴𝑥
Know: 𝑇(𝑥) = 𝐴𝑥
So, 𝐴𝑥 − 𝐴𝑥 = 0

So 𝑇

4
0
0

−4

= 0

Let 𝑇 be the lienar transformation with the matrix below. Match each choice of 𝐴 on the left with the geometric description of the action 
of 𝑇 on the right.

.5 0
0 .5

= 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 1/2

0 0
0 1

= 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑛𝑡𝑜 𝑦 − 𝑎𝑥𝑖𝑠

0 −1
1 0

= 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 90°

1 𝑎
0 1

= 𝑠ℎ𝑒𝑒𝑟

5.
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General Information:
Midterm 1: Kenaeda Building (8:00-8:50pm)•
MATLAB due tonight

Professor is not an expert in MATLAB○
•

Notes:

Section 1.9: Linear Transforms

Definition: The Standard Vectors
The standard vecotrs in ℝ are the vectors 𝑒⃗, 𝑒⃗, … , 𝑒 ⃗ where:

𝑒⃗ =

1
0
⋮
0

, 𝑒⃗ =

⎝

⎜
⎛

0
1
0
⋮
0⎠

⎟
⎞

, 𝑒 ⃗ =

0
⋮
0
1

For example in ℝ :

𝑒⃗ =
1
0
0

, 𝑒⃗ =
0
1
0

, 𝑒⃗ =
0
0
1

�⃗� =

𝑥
𝑥
𝑥

= 𝑥
1
0
0

+ 𝑥
0
1
0

+ 𝑥
0
0
1

= 𝑥 𝑒 + 𝑥 𝑒 + 𝑥 𝑒

𝑇(�⃗�) = 𝑥 𝑇(𝑒⃗) + 𝑥 𝑇(𝑒⃗) + 𝑥 𝑇(𝑒⃗)

A Property of the Standard Vectors
Note: If 𝐴 is a 𝑚 × 𝑛 matrix with columns 𝑣⃗, 𝑣⃗, … , 𝑣⃗ then

A𝑣⃗ = 𝑣⃗, for 𝑖 = 1,2, … , 𝑛

So multiplying matrix by 𝑒 gives column 𝑖 of 𝐴.

Ex.
1 2 3
4 5 6
7 8 9

𝑒⃗ =
1 2 3
4 5 6
7 8 9

0
1
0

=
2
5
8

The Standard Matrix
Theorem:

Let 𝑇: ℝ → ℝ be a linear transformation. There there is a unique matrix 𝐴 such that:
𝑇(�⃗�) = 𝐴�⃗�,     �⃗� ∈ ℝ .

In fact, 𝐴 is a 𝑚 × 𝑛 matrix, and its jth column is the vector 𝑇𝑒.

𝐴 = [ 𝑇(𝑒⃗) 𝑇(𝑒⃗) ⋯ 𝑇(𝑒 ⃗)]

The matrix  𝐴 is the standard matrix for a linear transformation.

Rotations
Ex.1 What is the linear transform 𝑇: ℝ → ℝ defined by

𝑇(�⃗�) = �⃗� rotated counterclockwise by angle ∅?
𝑒⃗

1
sin(∅)

𝑇(𝑒⃗)
𝑇(𝑒⃗)

∅
∅ 𝑒⃗ cos(∅)

𝑇(𝑒⃗) =
cos(∅)

sin(∅)
, 𝑇(𝑒⃗) =

− sin(∅)

cos(∅)
Unit Circle                  

Thus for 𝐴 =
cos(∅) − sin(∅)

sin(∅) cos(∅)
: 𝑇(�⃗�) = 𝐴�⃗�, ∀�⃗� ∈ ℝ

Standard Matrices in ℝ𝟐

There is a long list of geometric transformations ofR2in ourtextbook, as well as on the next few slides (reflections, 
rotations, contractions and expansions, shears, projections, . . . )

•

Please familiarize yourself with them:  you are expected to memorize them (or be able to derive them)•

Two Dimensional Examples: Reflections
Reflection through x1 axis

𝑥

𝑒⃗

𝑒⃗ 𝑥
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𝑒 𝑥

Standard Matrix: 1 0
0 −1

Reflection through x2 axis

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: −1 0
0 1

Two Dimensional Examples: Reflection
Reflection through x2-x1 axis

x2-x1

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 0 1
1 0

Reflection through x2 - -x1axis

𝑥
x2 - -x1

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 0 −1
−1 0

Two Dimensional Examples: Contractions and Expansions
Horizontal Contraction

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 𝑘 0
0 1

|𝑘| < 1

Horizontal Expansion

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 𝑘 0
0 1

𝑘 > 1

Two Dimensional Examples: Contractions and Expansions
Vertical Contraction

𝑥

𝑒⃗



𝑒

𝑒⃗ 𝑥

Standard Matrix: 1 0
0 𝑘

|𝑘| < 1

Vertical Expansion

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 1 0
0 𝑘

𝑘 > 1

Two Dimensional Examples: Shears
Horizontal Shear(left)

𝑥

𝑘 < 0 𝑥

Standard Matrix: 1 𝑘
0 1

𝑘 > 0

Horizontal Shear(right)

𝑥

𝑘 > 0 𝑥

Standard Matrix: 1 𝑘
0 1

𝑘 < 0

Two Dimensional Examples: Shears
Vertical Shear(down)

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 1 0
𝑘 1

𝑘 > 0

Vertical Shear(up)

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 1 0
𝑘 1

𝑘 < 0

Two Dimensional Examples: Projections
Projection onto the x1 axis

𝑥



𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 1 0
0 0

Projection onto the x2 axis

𝑥

𝑒⃗

𝑒⃗ 𝑥

Standard Matrix: 0 0
0 1

Onto
Definition:
A linear transformation 𝑇: ℝ → ℝ is onto if for all �⃗� ∈ ℝ there is a  �⃗� ∈ ℝ so that 𝑇(�⃗�) = �⃗�.

Onto is an existence property: for any �⃗� ∈ ℝ , 𝐴�⃗� = �⃗� has a solution.

Examples:
A rotation on the plane is an onto linear transformation.•
A projection in the plane is not onto.•

Useful Fact:
𝑇 is onto if and only if its standard matrix has a pivot in every row.



Notes:

One-to-One
Definition:

A linear transformation 𝑇: ℝ → ℝ is one-to-one if for all 𝑏 ∈ ℝ there is at most one (possibly no) �⃗� ∈ ℝ so 
that 𝑇(�⃗�) = �⃗�

One-to-one is a uniqueness property, it does not assert existence for all �⃗�.

Ex.
A rotation on the plane is a one-to-one linear transformation.•
A projection in the plane is not one-to-one.•

Useful Facts
𝑇 is one-to-one if and only if the only solution to 𝑇(�⃗�) = 0⃗ is the zero vector, �⃗� = 0⃗.•
𝑇 is one-to-one if and only if the standard matrix 𝐴 of 𝑇 has no free variables.•

Ex.
Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn’t 
possible to do so, state why.

𝐴 is a 2 × 3 standard matrix for a one-to-one linear transform.a)

𝐴 =
1 0
0 1

impossible: #col > # rows

b)    𝐵 is a 3 × 2 standard matrix for an onto linear transform.

𝐵 =
1

impossible: #rows > #cols

c)    𝐶 is a 3 × 3 standard matrix of a linear transform that is one-to-one and onto.

𝐶 =
1 1 1

⟹
1 1 1
0 1 𝜋
0 0 15

if 𝑇: ℝ → ℝ , then "one-to-one" ⟺ "onto"

Theorem
For  a  linear  transformation 𝑇: ℝ → ℝ with standard matrix 𝐴 these are equivalent statements.

𝑇 is onto.a)
The matrix 𝐴 has columns which span ℝ .                                  n ≥ mb)
The matrix 𝐴 has m pivotal columns.c)

Theorem
For a linear transformation 𝑇: ℝ → ℝ with standard matrix 𝐴 these are equivalent statements.

𝑇 is one-to-one.1.
The unique solution to 𝑇(�⃗�) = 0⃗ is the trivial one2.
The matrix 𝐴 linearly independent columns.                               m ≥ n3.
Each column of 𝐴 is pivotal.4.

Additional Examples
Construct a matrix  𝐴 ∈ ℝ × , such that 𝑇(�⃗�) = 𝐴�⃗�, where 𝑇 is a linear transformation that rotates vectors in ℝ
counterclockwise by π radians about the origin, then reflects them through the line x1 = x2.

1.

Define a linear transformation by 𝑇(𝑥 , 𝑥 ) = (3𝑥 + 𝑥 ; 5𝑥 + 7𝑥 ; 𝑥 + 3𝑥 )

Is 𝑇 one-to-one? Is 𝑇 onto?
2.

Solution
x21.

x1 = x2

𝑒⃗

x1

𝑒⃗

𝑇: ℝ → ℝ2.
↳ Not onto because columns > rows

𝐴 =
3 1
5 7
1 3

𝑇(𝑒⃗) = 𝑇(1, 0) =
3
5
1

, 𝑇(𝑒⃗) = 𝑇(0, 1) =
1
7
3

↳ Two linearly independent columns: one-to-one.

Section 2.1: Matrix Operations

Definition: Zero and Identity Matrices
A zero matrix is any matrix whose every entry is zero.

0 × =
0 0 0
0 0 0

, 0 × =
0
0

1.

The 𝑛 × 𝑛 identity matrix has ones on the main diagonal, otherwise all zeros.

𝐼 =
1 0
0 1

, 𝐼 =
1 0 0
0 1 0
0 0 1

2.

𝐴 =
1 0
0 −1

𝑇(𝑒⃗) 𝑇(𝑒⃗)

RefÊÊÊÊÊÊÊRef
𝑒⃗ → 𝑒⃗ → 𝑒⃗
𝑒⃗ → −𝑒⃗ → −𝑒⃗
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Note:  any matrix with dimensions 𝑛 × 𝑛 is square. Zero matrices need not be square, identity matrices must be square.

Sums and Scalar Multiples
Suppose 𝐴 ∈ ℝ × , and 𝑎 , is the element of 𝐴 in row 𝑖 and column 𝑗.

If 𝐴 and 𝐵 are 𝑚 × 𝑛 matrices, then the elements of 𝐴 + 𝐵 are 𝑎 , + 𝑏 , .1.
If 𝑐 ∈ ℝ, then the elements of 𝑐𝐴 are 𝑐𝑎 , .2.

For example, if
1 2 3
4 5 6

+ 𝑐
7 4 7
0 0 𝑘

=
15 10 17
4 5 16

What are the values of 𝑐 and 𝑘?
𝑐 = 2; 𝑘 = 5

Properties of Sums and Scalar Multiples
Scalar multiples and matrix addition have the expected properties. If 𝑟, 𝑠 ∈ ℝ are scalars, and 𝐴, 𝐵, 𝐶 are 𝑚 × 𝑛
matrices, then

𝐴 + 0 × = 𝐴1.
(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)2.
𝑟(𝐴 + 𝐵) = 𝑟𝐴 + 𝑟𝐵3.
(𝑟 + 𝑠)𝐴 = 𝑟𝐴 + 𝑠𝐴4.
𝑟(𝑠𝐴) = (𝑟𝑠)𝐴5.

Matrix Multiplication
Definition

Let 𝐴 be a 𝑚 × 𝑛 matrix, and 𝐵 be a 𝑛 × 𝑝 matrix. The product is 𝐴𝐵 a 𝑚 × 𝑝 matrix, equal to
AB = A 𝑏⃗ ⋯ 𝑏 ⃗ = 𝐴𝑏⃗ ⋯ 𝐴𝑏 ⃗

Note: the dimensions of 𝐴 and 𝐵 determine whether 𝐴𝐵 is defined, and what its dimensions will be.

𝐴⏟
×

𝐵⏟
×

𝐴 ∈ ℝ × ⟹ �⃗� ∈ ℝ ; 𝑏 ∈ ℝ

Row Column Rule for Matrix Multiplication
The Row Column Rule is a convenient way to calculate the product 𝐴𝐵 that many students have encountered in pre-
requisite courses.

Row Column Method
If 𝐴 ∈ ℝ × has rows 𝑎⃗, and 𝐵 ∈ ℝ × has columns 𝑏⃗, each element of the product 𝐶 = 𝐴𝐵 is 𝑐 , =𝑎⃗. 𝑏⃗

Ex.
Compute the following using the row-column method.

𝐶 = 𝐴𝐵 =
2 0
1 −1

3 0 1
4 5 6

∴ 𝐶 =
6 0 2

−1 −5 −5
𝐵𝐴: not possible

𝐴𝐵 ≠ 𝐵𝐴 in general

Properties of Matrix Multiplication
Let 𝐴, 𝐵, 𝐶 be matrices of the sizes needed for the matrix multiplication to be defined, and 𝐴 is a 𝑚 × 𝑛 matrix.

(Associative) (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)1.
(Left Distributive) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶2.
(Right Distributive) (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶3.
(Identity for matrix multiplication) 𝐼 𝐴 = 𝐴𝐼4.

Warnings:
(non-commutative) In general, 𝐴𝐵 ≠ 𝐵𝐴.1.
(non-cancellation) 𝐴𝐵 = 𝐴𝐶 does not mean 𝐵 = 𝐶.2.
(Zero divisors) 𝐴𝐵 = 0 does not mean that either 𝐴 = 0 or 𝐵 = 0.3.

Ex.

𝐴 =
1 0
0 0

, 𝐵 =
0 0
0 1

, 𝐶 =
0 0
0 2

𝐴𝐵 = 0, 𝐴𝐵 = 𝐴𝐶,
but: 𝐴 ≠ 𝐵, 𝐵 ≠ 𝐶, 𝐵 ≠ 0

The Associative Property
The associative property is (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). If 𝐶 = �⃗�, then

(𝐴𝐵)�⃗� = 𝐴(𝐵�⃗�)

Schematically:
Multiply by 𝐴𝐵

�⃗� 𝐴𝐵�⃗�

Multiply by 𝐵

Multiply by 𝐴

B�⃗�

The matrix product 𝐴𝐵�⃗� can be obtained by either: multiplying by matrix 𝐴𝐵, or by multiplying by 𝐵 then by 𝐴. This 
means that matrix multiplication corresponds to composition of the linear transformations.



𝐴𝐵�⃗�
𝑓𝑖𝑟𝑠𝑡: 𝐵�⃗�

𝑡ℎ𝑒𝑛: 𝐴(𝐵�⃗�)



Worksheet 1.9, Linear Transforms

Indicate whether the statements are true or false.
If 𝐴 is a 3 × 2 matrix then the map 𝑥 → 𝐴𝑥 cannot be one-to-one.

Falsei.
a.

If 𝐴 is a 2 × 3 matrix then the map 𝑥 → 𝐴𝑥 cannot be onto.
Falsei.

b.

𝑇 : ℝ → ℝ is one-to-one if and only if 𝐴�⃗� = 0⃗ only has the trivial solution.
Truei.

c.

1.

Construct the standard matrix of the linear transformation 𝑇.

𝑇: ℝ → ℝ , where 𝑇 1
0

=

3
1
4
1

and 𝑇 0
1

=

1
6
1
8

3 1
1 6
4 1
1 8

a.

𝑇 is a vertical shear given by 𝑇(𝑒⃗) = 2𝑒⃗ and 𝑇(𝑒⃗) = 𝑒⃗ − 2𝑒⃗
[𝑒⃗ −2𝑒⃗ 2𝑒⃗]

=
1 0

−2 2

b.

A matrix 𝐴 ∈ ℝ × such that 𝑇(�⃗�) = 𝐴�⃗�. T is a linear transformation that first reflects vectors across the line 
x1 = x2 then rotates them counterclockwise by 𝜋 radians about the origin, then reflects them across the line 
x2 = 0.

c.

2.

x2

x1 = x2

x1

e1

0 −1
1 0

=
1 0
0 −1

1 0
0 1

0 1
1 0

x2 = 0        𝜋 x1 = x2

Notes:
𝑇: ℝ → ℝ , 𝑇(𝑥) = 𝐴𝑥

The following are equivalent
𝑇 is one-to-one.•
𝐴𝑥 = 0 has only the trivial solution•
No free variables in 𝐴•
Columns of 𝐴 are independent.•
𝑇 is onto•
Pivot in every row of 𝐴•
𝐴𝑥 = 𝑏 consistent for every 𝑏 ∈ ℝ•
Ran(𝑇) = ℝ•
If 𝑇 is 1-1 and onto, then 𝑚 = 𝑛 and RREF of 𝐴 is 𝐼.•

Worksheet 2.1, Matrix Operations
Written Explanation Exercise1.
For square matrices 𝐴, 𝐵, is it always true that (𝐴 + 𝐵) = 𝐴 + 2𝐴𝐵 + 𝐵 ? Explain why/why not.

No, because 𝐴𝐵 does not always equal 𝐵𝐴a.
Consider:

𝐴 =
1 1
0 1

,   𝐵 =
1 ℎ
𝑘 1

2.

For what values (if any) of  𝑘 ∈ ℝ and ℎ ∈ ℝ:
Do matrices 𝐴 and 𝐵 commute?

False
a.

Is the product 𝐴𝐵 equal to 𝐼 ?
True

b.

Is the product 𝐴𝐵 equal to the 2 × 2 zero matrix 0 × ?
True

c.

𝐴 is an 𝑛 × 𝑛 matrix that has elements 𝑎 , where

𝑎 , =
0, 𝑤ℎ𝑒𝑛 𝑖 + 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛
1, 𝑤ℎ𝑒𝑛 𝑖 + 𝑗 𝑖𝑠 𝑜𝑑𝑑

3.

For 𝑛 ≥ 2, how many pivot columns does 𝐴 have?
2 pivots
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Notes:

Proof of the Associative Law

Let 𝐴 be 𝑚 × 𝑛, 𝐵 = �⃗� ⋯ �⃗� a 𝑛 × 𝑝 and 𝐶 =

𝑐
⋮

𝑐
𝑝 × 1 matrix. Then,

𝐵𝐶 = 𝑐 �⃗� + ⋯ + 𝑐 �⃗�

So,
𝐴(𝐵𝐶) = 𝐴𝑐 �⃗� + ⋯ + 𝑐 �⃗�

= 𝑐 𝐴�⃗� + ⋯ + 𝐴𝑐 �⃗� (multiply by 𝐴 is linear)

= 𝐴�⃗� ⋯ 𝐴�⃗�

𝑐
⋮

𝑐
(lin combin of cols of 𝐴𝐵)

= (𝐴𝐵)𝐶
Ex.

𝐴 =
1 1
0 0

Give an example of a 2 × 2 matrix 𝐵 that is non-commutative with 𝐴.

𝐴 =
1 1
0 0

Try, 𝐵 =
1 6
6 1

⎩
⎨

⎧𝐴𝐵 =
7 7
0 0

𝐵𝐴 =
1 1
6 6

𝐴 =
1 0
0 0

, 𝐵 =
1 1
0 0

: 𝐴𝐵 ≠ 𝐵𝐴

The Transpose of a Matrix
𝐴 is the matrix whose columns are the rows of 𝐴.

Ex.

1 2
0 1

3 4
0 2

5
0

=

⎣
⎢
⎢
⎢
⎡
1 0
2 1
3 0
4 2
5 0⎦

⎥
⎥
⎥
⎤

Properties of the Matrix Transpose
(𝐴 ) = 𝐴1.
(𝐴 + 𝐵) = 𝐴 + 𝐵2.
(𝑟𝐴) = 𝑟(𝐴 )3.
(𝐴𝐵) = 𝐵 𝐴4.

𝐴⏟
×

× 𝐵⏟
×

= 𝐴𝐵
×

⟹ 𝐴𝐵
×

𝐵⏟
×

× 𝐴⏟
×

= 𝐴𝐵
×

𝐴𝐵: (𝐴𝐵) , = 𝑅𝑜𝑤(𝐴, 𝑖). 𝐶𝑜�⃗�(𝐵, 𝑗)

(𝐴𝐵) = (𝐴𝐵) , = Row⃗(𝐴, 𝑗). 𝐶𝑜�⃗�(𝐵, 𝑖)

= Row⃗(𝐵 , 𝑖). 𝐶𝑜�⃗�(𝐴 , 𝑗)

Matrix Powers
𝑥 = 𝑥 𝑥
𝐴 = 𝐴⏟

×

𝐴⏟
×

⟹ 𝑛 must be 𝑚 (square matrix)

For any 𝑛 × 𝑛 matrix and possible integer 𝑘, 𝐴 is the product of 𝑘 copies of 𝐴.
𝐴 = 𝐴𝐴 … 𝐴

Ex. Compute 𝐶

𝐶 =
1 0 0
0 2 0
0 0 2

𝐶 =
1 0 0
0 2 0
0 0 2

1 0 0
0 2 0
0 0 2

=
1 0 0
0 4 0
0 0 4

↳ 𝐶
1 0 0
0 2 0
0 0 2

𝐴 =
1 1
1 1

⟹ 𝐴 =
2 2
2 2

𝐴 =
√3

2 − 1
2

1
2

√3
2

⟹ 𝐴 =
1

2 − √3
2

√3
2

1
2

Lecture 10
Wednesday, September 15, 2021 3:28 PM



𝑟𝑜𝑡( ⁄ ) 𝑟𝑜𝑡( ⁄ )

Ex.
Define:

𝐴 =
1 0
0 0

, 𝐵 =
1 0 0
0 0 8

, 𝐶 =
1 0 0
0 2 0
0 0 2

Which of these operations are defined, and what are the dimensions of the result?
𝐴 + 3𝐶: Not Possible1.
𝐴(𝐴𝐵) : 𝐴 ∈ ℝ × (𝐴𝐵) ∈ ℝ × : Not possible2.
𝐴 + 𝐴𝐵𝐶𝐵 : 𝐴 + 𝐴𝐵𝐶𝐵 ∈ ℝ ×3.
(𝐴𝐵) : NP

𝐴𝐵 ∈ ℝ ×
4.

(𝐴𝐵) = 𝐴𝐵𝐴𝐵
≠ 𝐴 𝐵

Additional Examples
(𝑎 − 𝑏)(𝑎 + 𝑏) = 𝑎 − 𝑏
(𝑎 + 𝑏) = 𝑎 + 2𝑎𝑏 + 𝑏

True or False:
For any 𝐼 and any 𝐴 ∈ ℝ × , ( 𝐼 + 𝐴)( 𝐼 − 𝐴) = 𝐼 − 𝐴

( 𝐼 + 𝐴)( 𝐼 − 𝐴) = 𝐼 + 𝐴𝐼 − 𝐼 𝐴 − 𝐴

= 𝐼 − 𝐴 : TRUE

1.

For any 𝐴 and 𝐵 in ℝ × , (𝐴 + 𝐵) = 𝐴 + 2𝐴𝐵 + 𝐵
(𝐴 + 𝐵) = (𝐴 + 𝐵)(𝐴 + 𝐵)

= 𝐴 + 𝐴𝐵 + 𝐵𝐴 + 𝐵
≠ 2𝐴𝐵: FALSE

2.

𝐼 =
1 (0)

⋱
(0) 1



Material Covered:
Chapter 2: Matrix Algebra

Section 2.2 : Inverse of a Matrix•
Section 2.3 : Invertible Matrices•
Section 2.4 : Partitioned Matrices•
Section 2.5 : Matrix Factorizations•
Section 2.6 : The Leontif Input-Output Model•
Section 2.7 : Computer Graphics•
Section 2.8 : Subspaces of ℝ•
Section 2.9 : Dimension and Rank•

Chapter 3: Determinants
Section 3.1 : Introduction to Determinants•
Section 3.2 : Properties of the Determinant•
Section 3.3 : Volume, Linear Transformations•

Chapter 4: Vector Spaces
Section 4.9 : Applications to Markov Chains•

Chapter 5: Eigenvalues and Eigenvectors
Section 5.1 : Eigenvectors and Eigenvalues•
Section 5.2 : The Characteristic Equation•

Unit 2
Saturday, November 13, 2021 8:49 PM



Notes:

Section 2.2: Inverse of a Matrix

The Matrix Inverses
Definition:

𝐴 ∈ ℝ × is invertible (or non-singular) if there is a 𝐶 ∈ ℝ × so that
𝐴𝐶 = 𝐶𝐴 = 𝐼

If there is, we write 𝐶 = 𝐴
𝐴 𝐴 = 𝐴 𝐴 = 𝐼

Uniqueness:
If 𝐴𝐶 = 𝐶𝐴 = 𝐼

And 𝐴𝐷 = 𝐷𝐴 = 𝐼
𝐶𝐴𝐷 = 𝐶𝐷𝐴 = 𝐶 ↲ × 𝑐

The inverse of a 2 × 2 Matrix
There's a formula for computing the inverse of a 2 × 2 matrix.

Theorem:

The 2 × 2 matrix 𝑎 𝑏
𝑐 𝑑

is non-singular if and only if 𝑎𝑑 − 𝑏𝑐 ≠ 0, and then

𝑎 𝑏
𝑐 𝑑

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏

−𝑐 𝑎
Ex.

State the inverse of the Matrix below

𝐴 =
2 5

−3 −7
2 × (−7) − (−3) × 5 ≠ 0: 𝐴 is invertible

𝐴 =
1

2 × (−7) − (−3) × 5
=

−7 −5
3 2

=
−7 −5
3 2

The Matrix Inverse
= 𝐼 𝐴�⃗� = �⃗� ⟹ 𝐴 𝐴�⃗� = 𝐴 �⃗�

Theorem:
𝐴 ∈ ℝ × has an inverse if and only if for all �⃗� ∈ ℝ , 𝐴�⃗� = �⃗� has a unique solution. And, in this case �⃗� = 𝐴 �⃗�

Ex.
Solve the linear system

3x1 + 4x2 = 7
5x1 + 6x2 = 7

3 4
5 6

�⃗� =
7
7

3 4
5 6

=
1

(3 × 6) − (5 × 4)
6 −4

−5 3
= −

1

2
6 −4

−5 3
=

−3 2
2.5 −1.5

∴ �⃗� = 𝐴 �⃗� =
−3 2
2.5 −1.5

7
7

=
−7
7

Properties of the Matrix Inverse
𝐴 and 𝐵 are omvertob;e 𝑛 × 𝑛 matricies.

(𝐴 ) = 𝐴1.
(𝐴𝐵) = 𝐵 𝐴 (Non-commutative)2.
(𝐴 ) = (𝐴 )3.

Ex.
True or False: (𝐴𝐵𝐶) = 𝐶 𝐵 𝐴 ⟹True
(𝐵 𝐴 )(𝐴𝐵) = 𝐵 (𝐴 𝐴)𝐵 = 𝐵 𝐵 = 𝐼

(𝐴𝐵)(𝐵 𝐴 ) = 𝐴(𝐵𝐵 )𝐴 = 𝐴𝐴 = 𝐼
2.

𝐴𝐴 = 𝐴 𝐴 = 𝐼3.
(𝐴 ) 𝐴 = 𝐴 (𝐴 ) = 𝐼

An Algorithm for Computing 𝑨 𝟏

If 𝐴 ∈ ℝ × and 𝑛 > 2, how do we calculate 𝐴 ? 
Here's an algorithm we can use:

Row reduce the augmented matrix (𝐴|𝐼 )1.
If reduction has form (𝐼 |𝐵) the 𝐴 is invertible and 𝐵 = 𝐴 . Otherwise, 𝐴 is not invertible.2.

Ex.

Compute the inverse of 𝐴 =
0 1 2
1 0 3
0 0 1

(𝐴|𝐼 ) 0 1 2
1 0 3
0 0 1

1 0 0
0 1 0
0 0 1

{solve "𝐴𝐶 = 𝐼 " → "(𝐴|𝐼 )"}

R1 ← R2

~
0 1 2
1 0 3
0 0 1

0 1 0
1 0 0
0 0 1

R1 ← R1 − 3R3

~
R2 ← R2 − 2R3

1 0 0
0 1 0
0 0 1

0 1 −3
1 0 −2
0 0 1

∴ 𝐴 = 0 1 −3
1 0 −2
0 0 1
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Why Does This Work?
We can think of our algorithm as simulatenously solving n linear systems:

𝐴�⃗� = 𝑒⃗

𝐴�⃗� = 𝑒⃗
⋮

𝐴�⃗� = 𝑒 ⃗
Each column of 𝐴 is 𝐴 𝑒⃗ = �⃗�

OverÊtheÊnextÊfewÊslidesÊweÊexploreÊanotherÊexplanationÊforÊhowÊouralgorithmÊworks.ÊThisÊotherÊexplanationÊusesÊelementaryÊmatrices.

Elementary Matrices
An elementary matrix, 𝐸, is one that differs byInby one row operation. Recall our elementary row operations:

swap rows1.
multiply a row by a non-zero scalar2.
add a multiple of one row to anotherWe can represent each operation by a matrix multiplication with an elementary matrix.3.

Ex.

Swap R1 ⟷ R3: 𝐸 =
1 0 0
0 1 0
0 0 1

•

R2 ⟵ 𝜋R2 𝐸 =
1 0 0
0 1 0
0 0 1

•

𝐸: R3 ← R3 + 5R1 𝐸 =
1 0 0
0 1 0
5 0 1

𝐸 = 𝐸
1 0 0
0 1 0
0 0 1

=
1 0 0
0 1 0
5 0 1

Ex.
Suppose

𝐸
1 1 1

−2 1 0
0 0 1

=
1 1 1
0 3 2
0 0 1

By inspection, what is 𝐸? How does it compare to 𝐼 ?
𝐸: R2 ← R2 + 2R1

𝐸 =
1 0 0
2 1 0
0 0 1

Theorem
Returning to understanding why our algorithm works, we apply a sequence of row operations to 𝐴 to obtain 𝐼 :

(𝐸 ⋯ 𝐸 𝐸 𝐸 ) 𝐴 = 𝐼
Thus, 𝐸 ⋯ 𝐸 𝐸 𝐸 is the inverse matrix we seek.

Our algorithm for calculating the inverse of a matrix is the result of the following theorem.

Theorem
Matrix 𝐴 is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row operations that 
transforms 𝐴 into 𝐼, applied 𝐼, generates 𝐴 .

(𝐴|𝐼 )
(𝐸 𝐴|𝐸 𝐼 )
(𝐸 𝐸 𝐴|𝐸 𝐸 𝐼 )
(𝐸 … 𝐸 𝐸 𝐴|𝐸 … 𝐸 𝐸 𝐼 )

Using The Inverse to Solve a Linear System
We could use 𝐴 to solve a linear system

𝐴�⃗� = �⃗�

•

We could calculate 𝐴 and then: �⃗� = 𝐴 �⃗�•

As our textbook points out, 𝐴 is seldom used:  computing it can take a very long time, and is prone to numerical error.•
So why did we learn how to compute 𝐴 ?  Later on in this course,we use elementary matrices and properties of 𝐴 to derive results.•
A recurring theme of this course:  just because we can do something a certain way, doesn’t that we should.•



Notes:

Section 2.3 Invertible Matrices

The Invertible Matrix Theorem
Theorem
Let 𝐴 be an 𝑛 × 𝑛 matrix. These statements are all equivalent.

𝐴 is invertible.a)
𝐴 is row equivalent to 𝐼 .b)
𝐴 has 𝑛 pivotal columns. (All columns are pivotal.)c)
𝐴�⃗� = 0⃗ has only the trivial solution.d)
The columns of 𝐴 are linearly independent.e)
The linear transformation �⃗� ↦ 𝐴�⃗� is one-to-one.f)
The equation 𝐴�⃗� = �⃗� has a solution for all �⃗� ∈ ℝ .g)
The columns of 𝐴 span ℝ .h)
The linear transformation �⃗� ↦ 𝐴�⃗� is onto.i)
There is a 𝑛 × 𝑛 matrix 𝐶 so that 𝐶𝐴 = 𝐼 . (𝐴 has a left inverse.)j)
There is a 𝑛 × 𝑛 matrix 𝐷 so tha 𝐴𝐷 = 𝐼 . (𝐴 has a right inverse.)k)
𝐴 is invertible.l)

Proofs:
If 𝐶𝐴 = 𝐼
If 𝐴�⃗� = 𝐴�⃗�:   𝑐𝐴�⃗� = 𝑐𝐴�⃗�

Thus, �⃗� → 𝐴𝑥 is one-to-one

If 𝐴𝐷 = 𝐼

Take: �⃗� ∈ ℝ :    (𝐴𝐷)�⃗� = 𝐼 �⃗�

𝐴𝐷�⃗�= �⃗�

Thus, �⃗� → 𝐴𝑥 is onto

𝐶𝐴 = 𝐼 ⟹ 𝐴 𝐶 = 𝐼

Invertibility and Composition
The diagram below gives us another perspective on the role of 𝐴 .

�⃗� Multiply by 𝐴

Multiply
by 𝐴 𝐴�⃗�

The matrix inverse 𝐴 transforms 𝐴𝑥 back to �⃗�.  This is because:
𝐴 (𝐴�⃗�) = (𝐴 𝐴)�⃗� = �⃗�

The Invertible Matrix Theorem: Final Notes
Items j and k of the invertible matrix theorem (IMT) lead us directly to the following theorem.

Theorem
If 𝐴 and 𝐵 are 𝑛 × 𝑛 matricies and 𝐴𝐵 = 𝐼 then 𝐴 and 𝐵 are invertible and 𝐵 = 𝐴 and 𝐴 = 𝐵
The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes:  
invertible, and non-invertible.

•

As we progress through this course, we will be able to add additional equivalent statements to the IMT (that deal 
with determinants, eigenvalues, etc).

•

If 𝐴𝐵 = 𝐼
By IMT: 𝐴 is invertible

𝐴 (𝐴𝐵) = 𝐴 𝐼

Ex.1
Is this matrix invertible?

𝐴 =
1 0 2
3 1 −2

−5 −1 9

1 0 2
3 1 −2

−5 −1 9

R2 ← R2 − 3R1

~
R3 ← R3 + R1

1 0 2
0 1 4
0 −1 −1

R3 ← R3 + R2

~
1 0 2
0 1 4
0 0 3

Ex. 2
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Singular = not invertible

If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are singular. If it
is not possible to do so, state why.

1 0 1
1 0 1
0 0 1

1 1
0 1 1
0 0 1

1 0 0
0 1 1
0 1 1

Not possible                         Not possible                             Possible
2 pivot columns                pivot in all columns                2 pivot columns

Matrix Completion Problems
The previous example is an example of a matrix completion problem (MCP).•
MCPs are great questions for recitations, midterms, exams.•
The Netflix Problem is another example of an MCP.•

Given a ratings matrix in which each entry (𝑖, 𝑗) represents the rating of movie 𝑗 by customer 𝑖 if customer 𝑖 has watched 
movie 𝑗, and is otherwise missing, predict the remaining matrix entries in order to make recommendations to customers 
on what to watch next.

Section 2.4: Partitioned Matricies

What is a partitioned matrix?
Ex.
This matrix:

3 1
1 6
0 0

4 1 0
1 0 1
0 4 2

Can also be written as:

3 1 4
1 6 1

1 0
0 1

[0 0 0] [4 2]

We partitioned our matrix into four blocks, each of which has different dimensions.

Another Example of a Partitioned Matrix
Example: The reduced echelon form of a matrix. We can use a partitioned matrix to

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

0 ∗ ⋯
0 ∗ ⋯
0 ∗ ⋯

0
0
0

0 0 0
0 0 0
0 0 0

1 ∗ ⋯
0 0 ⋯
0 0 ⋯

0
0
0⎦

⎥
⎥
⎥
⎥
⎤

This is useful when studying the null space of 𝐴, as we will see later in this course.

Row Column Method
Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,

[1 1 1]
1
0
2

= 3

This is the row column matrix multiplication method from Section 2.1.

Theorem
Let 𝐴 be 𝑚 × 𝑛 and 𝐵 be 𝑛 × 𝑝 matrix. Then, the (𝑖, 𝑗) entry of 𝐴𝐵 is

𝑟𝑜𝑤 𝐴 = 𝑐𝑜𝑙 𝐵

This is the Row Column Method for matrix multiplication.

Partitioned matrices can be multiplied using this method, as if each block were a scalar (provided each block has 
appropriate dimensions).

𝐴 𝐵
𝐶 𝐷

𝐸 𝐹
𝐺 𝐻

=
𝐴𝐸 + 𝐵𝐺 ⋯ ⋯

⋯ ⋯ ⋯ ⋯

Example of Row Column Method

Recall, using our formula for a 2 × 2 matrix, 𝑎 𝑏
𝑐 𝑑

=
𝑑 −𝑏

−𝑐 𝑎

Ex.

Suppose 𝐴 ∈ ℝ × , 𝑉 ∈ ℝ × , and 𝐶 ∈ ℝ × are invertible matrices.  Construct the inverse of 𝐴 𝐵
0 𝐶

.

𝐴 𝐵
0 𝐶

𝑊 𝑋
𝑌 𝑍

=
𝐴𝑊 + 𝐵𝑌 𝐴𝑋 + 𝐵𝐶

𝐶𝑌 𝐶𝑍
=

𝐼 0
0 𝐼

W, X, Y, Z ∈ ℝ ×

𝐶𝑌 = 0: 𝐶 𝐶𝑌 = 𝐶 0
𝐶𝑍 = 𝐼 : 𝑍 = 𝐶
𝐴𝑊 + 𝐵𝑌 = 𝐼 : 𝑊 = 𝐴



𝐴𝑋 + 𝐵𝑍 = 0: 𝐴𝑋 = −𝐵𝐶

𝐴 𝐵
0 𝐶

= 𝐴 −𝐴 𝐵𝐶
0 𝐶

2 × 2 matrix:
𝑎 𝑏
𝑐 𝑑

=
1

𝑎𝑐
𝑐 −𝑏
0 𝑎



Worksheet 2.2 and 2.3, Invertible Matricies
Consider the sequence of row operations that reduce matrix 𝐴 to the identity.

𝐴 =
0 4 0
1 0 0
0 8 1

~
1 0 0
0 4 0
0 8 1

~
1 0 0
0 4 0
0 0 1

~
1 0 0
0 1 0
0 0 1

= 𝐼

1.

Construct the elementary matrices 𝐸 , 𝐸 , 𝐸 .

𝐸 =
0 1 0
1 0 0
0 0 1

𝐸 =
1 0 0
0 1 0
0 −2 1

𝐸 =

1 0 0

0
1

4
0

0 0 1

Indicate whether the statements are true or false. 𝐴 is an 𝑛 × 𝑛 matrix.
If 𝐴�⃗� = 𝐴�⃗� for some �⃗� ≠ �⃗�, then 𝐴 cannot be intertible.

Truei.
a.

If for some �⃗� ∈ ℝ , 𝐴�⃗� = �⃗� has more than one solution then 𝐴 is invertible.
Falsei.

b.

Every elementary matrix is invertible.
Truei.

c.

2.

Compute the inverse of the matrix, where 𝑐 ∈ ℝ. For what values of 𝑐 does the matrix have an inverse?

𝐴 =
0 1 1
2 0 4
0 −1 𝑐

3.

0 1 1
2 0 4
0 −1 𝑐

R2 ⟷ R1

~
R3 ⟷ R2

2 0 4
0 1 1
0 −1 𝑐

R3 ← R3 + R2

R1 ← R1

R1 ← R1 + R3

1 0 𝑐 + 3
0 1 1
0 0 𝑐 + 1

R3 ← R3

~

1 0 𝑐 + 3
0 1 1
0 0 1

𝑐 ≠ −1

∴ 𝐴 = 𝐸 𝐸 𝐸 𝐴 =

⎝

⎜
⎜
⎛

−
2

𝑐 + 1

1

2
−

2

𝑐 + 1

1 −
1

𝑐 + 1
0 −

1

𝑐 + 1
1

𝑐 + 1
0

1

𝑐 + 1 ⎠

⎟
⎟
⎞

Let 𝐴 be an 𝑛 × 𝑛 matrix. Which statements guarantee that 𝐴 is invertible?
Every vector in ℝ is in the span of the columns of 𝐴.

Truei.
a.

𝐴�⃗� = �⃗� has a solution for every �⃗� ∈ ℝ .
Truei.

b.

Matrix 𝐴 can be row reduced to the identitity matrix.
Truei.

c.

The range of the linear transform �⃗� → 𝐴�⃗� is ℝ .
Truei.

d.

4.

Two reasons that a matrix is not invertible are:
One column is a multiple of another column.a.
One column is the sum of other columns.b.

5.

By inspection, identify which of the reasons above apply to these matrices.

𝐴 =
0 1 1
2 0 2
3 −1 2

𝐵 =
−7 0 5
3 0 −2

10 0 3

𝐶 =
1 2 3
7 14 21
5 10 15

𝐷 =
0 0 0
2 0 2
3 −1 2
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Section 2.5: Matrix Factorization

Motivation
Recall that we could solve 𝐴�⃗� = �⃗� by using 

�⃗� = 𝐴 �⃗�

•

This requires computation of the inverse of an 𝑛 × 𝑛 matrix, which is especially difficult for large 𝑛.•
Instead we could solve 𝐴�⃗� = �⃗� with Gaussian Elimination, but this is not efficient for large 𝑛.•
There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.•

Matrix Factorizations
A matrix factorization, or matrix decomposition is a factorization of a matrix into a product of matrices.•
Factorizations can be useful for solving 𝐴�⃗� = �⃗�, or understanding the properties of a matrix.•
We explore a few matrix factorizations throughout this course.•
In this section, we factor a matrix into lower and into upper triangular matrices.•

Triangular Matrices
A rectangular matrix 𝐴 is upper triangular if 𝑎 , 𝑗 = 0 for 𝑖 > 𝑗

1 5 0
0 2 4

,

1 0
0 2

0 1
1 0

0 0
0 0

1 0
0 1

,

2
0
0
0

•

A rectangular matrix 𝐴 is lower triangular if 𝑎 , 𝑗 = 0 for 𝑖 < 𝑗

1 0 0
3 2 0

,

3 0
1 1

0 0
0 0

0 0
0 2

1 0
0 1

,

1
2
1
2

•

Ask: Can you name a matrix that is both upper and lower triangular?

𝐼 =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 =
0 0 0
0 0 0
0 0 0

Diagonal matrix: 𝐷 =
3 0 0
0 5 0
0 0 2

The 𝑳𝑼 Factorization
Theorem

If 𝐴 is an 𝑚 × 𝑛 matrix that can be row reduced to echelon form without row exchanges, then 𝐴 = 𝐿𝑈. 𝐿 is a lower triangle 𝑚 × 𝑛 matrix 
with 1's on the diagonal, 𝑈 is an echelon form of 𝐴.

Ex.
If 𝐴 ∈ ℝ × , the 𝐿𝑈 factorization has the form:

𝐴 = 𝐿𝑈 =
1 0 0
∗ 1 0
∗ ∗ 1

∗ ∗
0 ∗
0 0

Fact: the 𝐿𝑈 factorization is unique
If 𝐴 = 𝐿 𝑈 = 𝐿 𝑈

Then 𝐿 = 𝐿 and 𝑈 = 𝑈

Why We Can Compute the 𝑳𝑼 Factorization
Suppose 𝐴 can be row reduced to echelon form 𝑈 without interchanging rows. Then,

𝐸 ⋯ 𝐸 = 𝑈

where the 𝐸 are matricies that perform elementary row operations. They happen to be lower triangular and invertible, e.g.
1 0 0
0 1 0
2 0 1

=
1 0 0
0 1 0

−2 0 1
Therefore,

𝐴 = 𝐸 ⋯ 𝐸 𝑈 = 𝐿𝑈

R3 ← R3 − 2R2:          𝐸 =
1 0 0
0 1 0
0 −2 1

𝐸 =
1 0 0
0 1 0
0 2 1

1 ∗ ∗
0 1 ∗
0 0 1

1 ∗ ∗
0 1 ∗
0 0 1

=
1 ∗ ∗
0 1 ∗
0 0 1

What about swap?

R1 ⟷ R3:         𝐸 =
0 0 1
0 1 0
1 0 0

:   Not lower Triangular

Using the 𝑳𝑼 Decomposition
Goal: given 𝐴 and �⃗�, solve 𝐴�⃗� = �⃗� for �⃗�.

Algorithm: construct 𝐴 = 𝐿𝑈, solve 𝐴�⃗� = 𝐿𝑈�⃗� = �⃗� by:
Forward solve for �⃗� in 𝐿�⃗� = �⃗�.1.
Backwards solve for �⃗� in 𝑈�⃗� = �⃗�.2.

Ex.
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Solve the linear system whose 𝐿𝑈 decomposition is given.

𝐴 = 𝐿𝑈 =

1 0
1 1

0 0
0 0

0 2
0 0

1 0
1 1

1 0 0
0 2 1
0 0 2
0 0 0

, �⃗� =

2
3
2
0

Forward: 𝐿�⃗� = �⃗� (�⃗� = 𝑈�⃗�)

1 0
1 1

0 0
0 0

0 2
0 0

1 0
1 1

𝑦
𝑦
𝑦
𝑦

=

2
3
2
0

1.

First row: y1 = z
Second row: y1 + y2 = 3   → y2 = 1
Third row: 2y2 + y3 = 2   → y4 = 0
Last row: y3 + y4 = 0   → y4 = 0

↳ �⃗� =

2
1
0
0

:         𝐿�⃗� = �⃗�

But we want 𝐴�⃗� = 𝐿(𝑈�⃗�) = �⃗�

Backward: 𝑈�⃗� = �⃗�
1 0 0
0 2 1
0 0 2
0 0 0

𝑥
𝑥
𝑥

=

2
1
0
0

Last row: 0 = 0
Third row: 2x3 = 6 0   → x3 = 0
Second row: 2x2 + x3 = 1   → x2 = ⁄

First row: x1 = 2

1.

Thus: �⃗� =
2
⁄
0

:          solution of 𝐴�⃗� = �⃗�

Indeed: 𝐴�⃗� = 𝐿𝑈�⃗� = 𝐿�⃗� = �⃗�

An Algorithm for Computing 𝑳𝑼
To compute the 𝐿𝑈 decomposition:

Reduce 𝐴 to an echelon form 𝑈 by a sequence of row replacement operations, if possible.1.
Place entries in 𝐿 such that the same sequence of row operations reduces 𝐿 to 𝐼.1.

Note that
In MATH 1554, the only row replacement operation we can use is to replace a row with a multiple of a row above it.•
More advanced linear algebra courses address this limitation.•

Ex.
Compute the 𝐿𝑈 factorization of 𝐴.

𝐴 =
4 −3

−16 12
8 −6

−1 5
2 −17

−12 22

𝐴
E1: R2 ← R2 + 4R1

~
E2: R3 ← R3 − 2R1

4 −3
−16 12

8 −6

−1 5
2 −17

−12 22

~
E3: R3 ← R3 − 5R2

4 −3
0 0
0 0

−1 5
−2 3
0 −3

= 𝑈

𝐿 = 𝐸 𝐸 𝐸 =
1 0 0

−4 1 0
0 0 1

1 0 0
0 1 0
2 0 1

1 0 0
0 1 0
0 5 1

𝐿 =

1 0 0
−4 1 0

2 5 1

Summary
To solve 𝐴�⃗� = 𝐿𝑈�⃗� = �⃗�

Forward solve for �⃗� in 𝐿�⃗� = �⃗�.1.
Backwards solve for �⃗� in 𝑈�⃗� = �⃗�.2.

•

To compute the 𝐿𝑈 decomposition:
Reduce 𝐴 to an echelon form 𝑈 by a sequence of row replacement operations, if possible.1.
Place entries in 𝐿 such that the same sequence of row operations reduces 𝐿 to 𝐼.2.

•

The textbook offers a different explanation of how to construct the 𝐿𝑈 decomposition that students may find  helpful.•
Another explanation on how to calculate the 𝐿𝑈 decomposition that students may find helpful is available from MIT Open Course Ware: 
www.youtube.com/watch?v=rhNKncraJMk

•



Worksheet 2.4 and 2.5, Partitioned Matrices and Matrix Factorizations

Worksheet Exercises
𝐴 and 𝐵 are 𝑛 × 𝑛 invertible matricies, 𝐼 is the 𝑛 × 𝑛 identity matrix, and 0 is the 𝑛 × 𝑛 matrix. Construct an expression for 𝑋 in terms of 
𝐴 and 𝐵.

(𝐴 𝐵)
0 𝑋 𝐵
𝐴 𝐵 0

𝑋
𝐼

𝐵𝐴
= 𝐵 + 𝐵𝐴𝑋

1.

(𝐴 𝐵) 0 𝑋 𝐵
𝐴 𝐵 0

𝑋
𝐼

𝐵𝐴
= (𝐴𝐵 𝐴𝑋 + 𝐵 𝐴𝐵)

𝑋
𝐼

𝐵𝐴
= (𝐵𝐴𝑋 + 𝐼 (𝐴𝐵 + 𝐵 ) + 𝐴 𝐵 )

∴ (𝐵𝐴𝑋 + 𝐼 (𝐴𝑋 + 𝐵 ) + 𝐴 𝐵 ) = 𝐵 + 𝐵𝐴𝑋 ⟹ 𝐼 (𝐴𝑋 + 𝐵 ) + 𝐴 𝐵 = 𝐵 ⟹ 𝐴𝑋 + 𝐵 + 𝐴 𝐵 = 𝐵
∴ 𝐴𝑋 + 𝐴 𝐵 = 0 ⟹ 𝑋 + 𝐴𝐵 = 0 ⟹ 𝑋 = −𝐴𝐵

Compute the 𝐿𝑈 factorization for

𝐴 =
−1 5
1 −10
0 −5

3 1
−3 1
0 2

2.

𝐴
E1: R2 ← R2 + R1

~
E2: R3 ← R3 − R2

−1 5
0 −5
0 −5

3 1
0 2
0 2

~
E3: R3 ← R3 − R2

−1 5
0 −5
0 0

3 1
0 2
0 0

= 𝑈

𝐿 = 𝐸 𝐸 𝐸 =
1 0 0

−1 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 1 1

𝐿 =

1 0 0
−1 1 0

0 1 1

Compute the 𝐿𝑈 factorization of 𝐴 and use it to solve for 𝐴�⃗� = �⃗�.

𝐴 =
2 −1 0

−1 2 −1
0 −1 2

=

1 0 0

− 1
2 1 0

0 − 2
3 1

1 ∗ ∗
0 1 ∗
0 0 1

, �⃗� =
0
4

−4

3.

𝐴 =

1 0 0

− 1
2 1 0

0 − 2
3 1

2 −1 0

0 3
2 −1

0 0 4
3

, �⃗� =
0
4

−4

Solve: 𝐿�⃗� = �⃗� (�⃗� = 𝑈�⃗�)
1 0 0

− 1
2 1 0

0 − 2
3 1

𝑦
𝑦
𝑦

=
0
4

−4

First row: y1 = 0
Second row: − ⁄ y1 + y2 = 4   → y2 = 4
Third row: − ⁄ y2 + y3 = -4   → y3 = ⁄

↳ �⃗� =
0
4

− ⁄
:         𝐿�⃗� = �⃗�

Solve: 𝑈�⃗� = �⃗�
2 −1 0

0 3
2 −1

0 0 4
3

𝑥
𝑥
𝑥

=

0
4

− 4
3

Third row: ⁄ x3 = − ⁄ → x3 = −1
Second row: ⁄ x2 − x3 = 4   → x2 = 2
First row: 2x1 − x2 = 0   → x1 = 1

Thus: �⃗� =
1
2

−1
:          solution of 𝐴�⃗� = �⃗�

Written Explanation Exercise: What is the 𝐿𝑈 decompostiion good for? Your reasoning should involve computational efficiency.4.

𝐿𝑈 decomposition is generally used for computational efficiency since the amount of steps it takes to find the inverse of 𝐴 such that 𝐴 =
𝐿𝑈 is significantly less when compared to standard and more roundabout way of computing the inverse.
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Notes:
Section 2.6: The Leontif Input-Output Model

Example:  An Economy with Two Sectors

E

External Demands

W

This economy contains two sectors.
electricity (E)1.
water (W)2.

The “external demands” is another part of the economy, which does notproduce E and W.

How might we represent this economy with a set of linear equations?

The Leontif Model: Internal Consumption
Suppose economy has 𝑁 sectors, with outputs measured by �⃗� ∈ ℝ .

�⃗� = output vector 𝑥 = element 𝑖 of vector
�⃗� = number of units produced by sector 𝑖

The consumption matrix, 𝐶, describes how units are consumed by sectors to produce output. Two equivalent ways of 
defining 𝐶:

Sector 𝑗 requires a proportion of the units created by sector 𝑖. Call that 𝑐 , 𝑥•
Sector 𝑖 sends a proportion of its units to sector 𝑗. Call that 𝑐 , 𝑥•

Elements of 𝐶 are 𝑐 , , with 𝑐 , ∈ [0, 1] and
𝐶�⃗� = units consumed
�⃗� − 𝐶�⃗� = units left after internal consumption

𝑗

𝐶 = 𝑖:    𝑐 , = pattern of sector 𝑖 needed to produce 1 unit of 𝑗.

Ex.
An economy contains three sectors, E, W, M. For every 100 units of output,

E requires 20 units from E, 10 units from W, and 10 units from M•
W requires 0 units from E, 20 units from W, and 10 units from M•
M requires 0 units from E, 0 units from W, and 20 units from M•

Construct the consumption matrix for this economy.

10%
E                                          W                 20%

20%
10%

M                 20%

𝐸 𝑊 𝑀

𝐶 =
0.2 0 0
0.1 0.2 0
0.1 0.1 0.2

𝐸
𝑊
𝑀

𝐶�⃗� =
0.2𝑥𝐸 0 0
0.1𝑥𝐸 0.2𝑥𝐸 0
0.1𝑥𝐸 0.1𝑥𝐸 0.2𝑥𝐸

Solution: Creating 𝑪
Our consumption matrix is

𝐶 =
1

10

2 0 0
1 2 0
1 1 2

Note:
total output for each sector is the sum along the outgoing edges for each sector, which generates rows of 𝐶•
elements of 𝐶 represent percentages with no units, they have values between 0 and 1•
our output vector has units•
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The Leontif Model: Demand
There is also an external demand given by 𝑑 ∈ ℝ .  We ask if there is an �⃗� such that

�⃗� − 𝐶�⃗� = 𝑑
Solving for �⃗� yields

�⃗� = (𝐼 − 𝐶)𝑑
This is the Leontief Input-Output Model.

(𝐼 − 𝐶)�⃗� = 𝑑
If (𝐼 − 𝐶) is invertible

Then �⃗� = (𝐼 − 𝐶) 𝑑

Ex. 1 Revisited
Now suppose there is an external demand: what production level is required to satisfy a final demand of 80 units of E, 70 
units of W, and 160 unites of M?

10%
20%          E                                               W             20%

80 units                                  70 units
10%

10%

D                                               M             20%

𝑑 =
80
70

160

∴ (𝐼 − 𝐶) =
1

10

8 0 0
−1 8 0
−1 −1 8

Solve (𝐼 − 𝐶)�⃗� = 𝑑

Solution:
The production level would be found by solving:

�⃗� − 𝐶�⃗� = 𝑑

�⃗� = (𝐼 − 𝐶)𝑑

1

10

8 0 0
−1 8 0
−1 −1 8

�⃗� =
80
70

160

8x1 = 800 ⟹ x1 = 100
−x1 +   8x2 = 700 ⟹ x2 = 100

−x1 −x2 +   8x3 = 1600 ⟹ x2 = 225

The output that balances demand with internal consumption is

�⃗� =
100
100
225

The Importance of (𝑰 − 𝑪) 𝟏

For the example above

(𝐼 − 𝐶) ≈
1.25 0 0
0.15 1.25 0
0.18 0.17 1.25

The entries of (𝐼 − 𝐶) = 𝐵 have this meaning: if the final demand vector 𝑑 increases by one unit in the 𝑗 place, the 
column vector 𝑏 is the additional output required from other sectors.

So to meet an increase in demand for M by one unit, requires 1.25 of one additional units from M to meet internal 
consumption.

First/Odd demand: 𝑑⃗

𝑥⃗ = (𝐼 − 𝐶) 𝑑⃗

New demand: 𝑑 ⃗ = 𝑑⃗ + 𝐾𝑒⃗

𝑥 ⃗ = (𝐼 − 𝐶) 𝑑 ⃗ = (𝐼 − 𝐶) 𝑑⃗ + 𝐾(𝐼 − 𝐶)
( )

𝑒⃗



Section 2.7: Computer Graphics

Homogeneous Coordinates
Translations of points in Rn does not correspond directly to a linear transform. Homogeneous coordinates are used 
model translations using matrix multiplication.

Homogeneous Coordinates in ℝ
Each point (𝑥, 𝑦) in ℝ can be identified with the point (𝑥, 𝑦, 𝐻), 𝐻 ≠ 0, on the plane in ℝ that lies 𝐻 units above the 
xy-plane. 

Note: we often we set 𝐻 = 1.

Example:  A translation of the form (𝑥, 𝑦) → (𝑥 + ℎ, 𝑦 + 𝑘) can be represented as a matrix multiplication with 
homogeneous coordinates:

1 0 ℎ
0 1 𝑘
0 0 1

𝑥
𝑦
1

=
𝑥 + ℎ
𝑦 + 𝑘

1

(𝑥, 𝑦, 𝐻) 𝑧 = 𝐻

(𝑥, 𝑦)

Homogeneous matrix of a 2D linear transform

𝐴
| 0
| 0

− −
0 0

+ −
| 1

, where 𝐴 is a linear matrix in 2D

A Composite Transform with Homogeneous Coordinates
Triangle 𝑆 is determined by three data points, (1,1), (2,4), (3,1). Transform 𝑇 rotates points by π radians 
counterclockwise about the point (0,1).

Represent the data with a matrix, 𝐷. Use homogeneous coordinates.a)
Use matrix multiplication to determine the image of 𝑆 under 𝑇.b)
Sketch 𝑆 and its image under 𝑇.c)

𝐷 =
1 2 3
1 4 1
1 1 1

A.

First: translation of 𝑢 =
0

−1
:          𝐴 =

1 0 0
0 1 −1
0 0 1

B.

Second: rotation: 𝑅 =
0 −1 0
1 0 0
0 0 1

Third: translation of �⃗� =
0
1
:          𝐵 =

1 0 0
0 1 1
0 0 1

↳ 𝑇 = 𝐵𝑅𝐴 =
0 −1 1
1 0 1
0 0 1

Image of 𝑆 under 𝑇 is 𝑇𝐷 =
0 −1 1
1 0 1
0 0 1

1 2 3
1 4 1
1 1 1

0 −3 0
2 3 4
1 1 1

3D Homogenous Coordinates
Homogeneous coordinates in 3D are analogous to our 2D coordinates.

Homogeneous Coordinates in ℝ .
(𝑋, 𝑌, 𝑍, 𝐻) are homogeneous coordinates for (𝑥, 𝑦, 𝑧) in ℝ , 𝐻 ≠ 0, and

𝑥 =
𝑋

𝐻
, 𝑦 =

𝑌

𝐻
, 𝑧 =

𝑍

𝐻

3D Transformation Matrices
Construct matrices for the following transformations.

A rotation in ℝ about the y-axis by π radians.a)

A translation specified by the vector 𝑝 =
−2
3
4

b)

Z

𝑅 (𝜃) =
1 0 0
0 cos(𝜃) −sin(𝜃)

0 sin(𝜃) cos(𝜃)

Y 𝑅 (𝜃) =
cos(𝜃) 0 sin(𝜃)

0 1 0
−sin(𝜃) 0 cos(𝜃)

X                                                                           𝑅 (𝜃) =
cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1
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Worksheet 2.6, 2.7, 2.8: The Leontif Input-Output Model, Computer Graphics, Subspaces of ℝ𝒏

Worksheet Exercises
An economy contains three sectors: X, Y, Z. For each unit of output,

𝑋 requires .2 units from 𝑋, .1 units from 𝑌, and .1 units from 𝑍.a.
𝑌 requires 0 units from 𝑋, .2 units from 𝑌, and .1 units from 𝑍.b.
𝑍 requires 0 units from 𝑋, 0 units from 𝑌, and .2 units from 𝑍.c.

1.

Construct the consumption matrix for this economy. What production level is required to satisfy a final demand of 80 units of
𝑋, 60 units of 𝑌, and 160 units of 𝑍?

𝐶 =
.2 0 0
.1 .2 0
.1 .1 .2

�⃗� = (𝐼 − 𝐶) 𝑑 =

100
175

2
3575

16
Rectangle 𝑆 is determined by the data points, (1,1), (3,1), (3,2), (1,2). Transform 𝑇 reflects points through the line 𝑦 = 2 − 𝑥

Represent the data with a matrix, 𝐷. Use homogeneous coordinates.

𝐷 =

1 1 1
3 1 1
3 2 1
1 2 1

a.

Use matrix multiplication to determine the image of 𝑆 under 𝑇.
𝑇 = 𝑇 𝑅 𝑇

∴ 𝑇 =
1 0 0
0 1 0
0 −2 1

0 −1 0
−1 0 0
0 0 1

1 0 0
0 1 0
0 2 1

=
0 −1 0

−1 0 0
2 0 0

∴ 𝑆 under 𝑇 =

1 1 1
3 −1 1
3 −1 1
1 −1 1

b.

Sketch 𝑆 and its image under 𝑇.c.

2.

y

1
x

y = 2 – x
-1

Transform 𝑇 = 𝐴�⃗� rotatoes points in ℝ about the point (1,2). Construct a standard matrix for the transform using 
homogeneous coordinates. Leave your answer as a product of three matricies.

𝑇 =
1 0 0
0 1 0

−1 −2 1

cos(𝜃) sin(𝜃) 0
−sin(𝜃) cos(𝜃) 0

0 0 1

1 0 0
0 1 0
1 2 1

3.

Construct the matrix for the transformation that performs a rotation in ℝ about the x-axis by 𝜋 radians.

𝐴 =
−1 0 0
0 −1 0
0 0 1

4.

𝐴 has the reduced echelon form below. Construct a basis for Col𝐴 and for Null𝐴

𝐴 = [𝑎⃗ 𝑎⃗ 𝑎⃗ 𝑎⃗ 𝑎⃗ 𝑎⃗]~

1 4 0
0 0 1

10 0 13
−3 0 −5

0 0 0
0 0 0

0 1 4
0 0 0

5.

Basis for Col𝐴 =

1
0
0
0

,

0
1
0
0

,

0
0
1
0

Basis for Null𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
−4
1
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎡
−10

0
3
1
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎡
−13

0
5
0

−4
1 ⎦

⎥
⎥
⎥
⎥
⎤
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Section 2.8: Subspaces of ℝ𝒏

Subsets of ℝ𝒏

Definition
A subset of ℝ𝒏 is any collection of vectors that are in ℝ𝒏.

In ℝ𝟐: 0
1
,

𝜋
𝑒
,

√

⁄
unit circle {�⃗� ∈ ℝ |𝑥 + 𝑥 = 1}

In ℝ𝟑: unit sphere {�⃗� ∈ ℝ |𝑥 + 𝑥 + 𝑥 = 1}

Subspaces in ℝ
Definition
A subset 𝐻 of ℝ is a subspace if it is close under scalar multiplies and vector addition. That is: for any 𝑐 ∈ ℝ and for 
𝑢, �⃗� ∈ 𝐻.

𝑐𝑢 ∈ 𝐻1.
𝑢 + �⃗� ∈ 𝐻2.

Note that condition 1 implies that the zero vector must be in 𝐻.
Ex.1: Which of the following subsets could be a subspace of ℝ

1

1

A) The unit square    B) a line passing through   C) a line that doesn't
NO                         the origin                         pass through the origin

( ⁄ ⁄ ) ∈ YES                                        NO
Unit Square                                                                         0⃗ ∉ ℝ

7( ⁄ ⁄ ) ∉
Unit Square

Remark: 0⃗ is the only bounded subspace of ℝ

The Column Space and the Null Space of a Matrix
Recall: for 𝑣⃗, … 𝑣⃗ ∈ ℝ , that Span 𝑣⃗, … 𝑣⃗ is:
The set of all combinations of 𝑣⃗, … 𝑣⃗

This is a subspace, spanned by 𝑣⃗, … 𝑣⃗

Definition
Given an 𝑚 × 𝑛 matrix 𝐴 = [𝑎⃗ ⋯ 𝑎 ⃗]

The column space of 𝐴, Col 𝐴, is the subspace of ℝ spaned by 𝑎⃗, … 𝑎 ⃗.1.
The null space of 𝐴, Null 𝐴, is the subspace of ℝ spanned by the set of all vectors �⃗� that solve 𝐴�⃗� = 0⃗.2.

𝑢, �⃗� ∈ Null 𝐴, 𝑐 ∈ ℝ

𝐴(𝑐𝑢) = 𝑐𝐴𝑢 = 0⃗: 𝑐𝑢 ∈ Null 𝐴
𝐴(𝑢 + �⃗�) = 𝐴𝑢 + 𝐴�⃗�: 𝑢 + �⃗� ∈ Null 𝐴

⟹Null 𝐴 is a subspace.

Ex.

𝐴 =
1 0
0 0

:
𝐶𝑜𝑙(𝐴) = 𝑆𝑝𝑎𝑛

1
0

𝑁𝑢𝑙𝑙(𝐴) = 𝑆𝑝𝑎𝑛
0
1

Ex.
Is �⃗� in the column space of 𝐴?

𝐴 =
1 −3 −4

−4 6 −2
−3 7 6

~
1 −3 −4
0 −6 −18
0 0 0

, �⃗� =
3
3

−4

𝐴 �⃗�=
1 −3 −4

−4 6 −2
−3 7 6

3
3

−4

R2 ← R2 + 4R1

~
R3 ← R3 + 3R1

1 −3 −4
0 6 −18
0 2 6

3
15
5

R3 ← R3 − R1

~

1 −3 −4
0 6 −18
0 0 0

3
15
0

A�⃗� = �⃗� is consistent: �⃗� ∈ 𝐶𝑜𝑙 𝐴
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Remark: The third column of 𝐴 is actually not needed here

Ex.2
Using the matrix on the previous slide: is �⃗� in the null space of 𝐴?

𝑐 =
−5𝜆
−3𝜆

𝜆
, 𝜆 ∈ ℝ

𝐴�⃗� =
1 −3 −4

−4 6 −2
−3 7 6

−5𝜆
−3𝜆

𝜆
= 𝜆

−5 + 9 − 4
18 − 18

0
= 0⃗

↳ �⃗� ∈ Null(𝐴)

Remark:

𝐸�⃗� =
1 −3 −4
0 6 −18
0 0 0

−5𝜆
−3𝜆

𝜆
= 𝜆

−5 + 9 − 4
18 − 18

0
= 0⃗

↳ �⃗� ∈ Null(𝐸)

Why: 𝐴 0⃗~𝐸 0⃗

→ A�⃗� = 0⃗ and E�⃗� = 0⃗ have the same solution set

Basis
Definition
A basis for a subspace 𝐻 is a set of linearly independent vectors in 𝐻 that span 𝐻.
Ex.

The set 𝐻 =

𝑥
𝑥
𝑥
𝑥

∈ ℝ 𝑥 + 2𝑥 + 𝑥 + 5𝑥 = 0

𝐻 is a null space for what matrix 𝜆?a)
Construct a basis for 𝐻.b)

𝑥 + 2𝑥 + 𝑥 + 5𝑥 = 0a)

(1 2 | 5)

𝑥
𝑥
𝑥
𝑥

= 0

𝐻 = Null(𝐴)

↳ This is a subspace of 𝐴



What is a subspace?
A subset S such that

0⃗ ∈ 𝑆a.
If �⃗�, �⃗� ∈ 𝑆, then �⃗� + �⃗� ∈ 𝑆b.
If �⃗� ∈ 𝑆, then 𝑐�⃗� ∈ 𝑆 for all 𝑐 ∈ 𝑆c.

1.

The span of some non-empty set of vectors2.
The column space of any matrix3.

Def: The dimension of a subspace 𝑆 is the smallest # of vectors that span 𝑆.

𝐶𝑜𝑙 [𝑢⃗ ⋯ 𝑢 ⃗]= 𝑆𝑝𝑎𝑛(𝑢⃗, … 𝑢 ⃗)

𝐶𝑜𝑙(𝐴) = {𝐴𝑥: 𝑥 ∈ ℝ }
𝑁𝑢𝑙𝑙(𝐴) = {𝑥: 𝐴𝑥 = 0}

Worksheet 2.8, 2.9, Dimension and Rank
Worksheet Exercises

Construct a 3 × 3 matrix 𝐴 with two pivotal columns, so that 
1
1
1

is the null space of 𝐴.

1 1 −2
0 1 −1
0 0 0

,
1 0 −1
0 1 −1
0 0 0

All 2 × 4 matricies have a non-trivial null space.
True

a.

A 4 × 2 matrix with two pivot columns can have a non-trivial null space.
False

b.

If the columns of a 6 × 6 matrix 𝐴 are a basis ffor ℝ , the null space of 𝐴 is the zero vector.
True

c.

1.

𝐴 is a 𝑛 × 𝑛 matrix that has elements 𝑎 , where

𝑎 , =
0, 𝑤ℎ𝑒𝑛 𝑖 + 𝑗 𝑖𝑠 𝑜𝑑𝑑
1, 𝑤ℎ𝑒𝑛 𝑖 + 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛

2.

Suppose 𝑛 ≥ 2.
What is the rank of 𝐴?

2
a.

Give a basis for the column space of 𝐴.

1
⋮
1

,

⎣
⎢
⎢
⎢
⎡
1
0
1
0
⋮ ⎦
⎥
⎥
⎥
⎤

b.

Which of the following, if any, are subspaces of ℝ ? For those that are subspaces, what is the dimension of the subspace?
𝑥
𝑥
𝑥

∈ ℝ 𝑥 + 𝑥 = 4

Not a subspace because 
0
0
0

is not in the set i.

a.

𝑥
𝑥
𝑥

∈ ℝ 𝑥 + 𝑥 + 𝑥 = 0, 𝑥 + 2𝑥 = 0

2i.

b.

𝑥
𝑥
𝑥

∈ ℝ 𝑥 < 𝑥 < 𝑥

Not a subspace because 
0
0
0

is not in the set i.

c.

The null space of 𝐴 =
1 0
2 0
3 0

1i.

d.

3.
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Notes:

�⃗�𝐺𝐻 = �⃗�

𝑥
𝑥
𝑥
𝑥

=

−2𝑥 −𝑥 −5𝑥
𝑥

𝑥
𝑥

= 𝑥

−2
1
0
0

⃗

+ 𝑥

−1
0
1
0

⃗

+ 𝑥

−5
0
0
1

⃗

⟹ {𝑣⃗, 𝑣⃗, 𝑣⃗} as a basis of 𝐻.

Ex.
Construct a basis for Null 𝐴 and a basis for Col 𝐴

𝐴 =
−3 6
1 −2
2 −4

−1 0
2 0
5 0

~
1 −2
0 0
0 0

0 0
1 0
0 0

−3
1
2

,
−1
2
5

is a basis for Col 𝐴

�⃗� ∈ Null (𝐴) if

�⃗� =

𝑥
𝑥
𝑥
𝑥

=

2𝑥
𝑥
0
𝑥

= 𝑥

2
1
0
0

+ 𝑥

0
0
0
1

2
1
0
0

,

0
0
0
1

is a basis for Null 𝐴

Additional Example

Let 𝑉 =
𝑎
𝑏

∈ ℝ 𝑎𝑏 = 0

Give an example of a vector in 𝑉.  1
0

1.

Give an example of a vector that is not in 𝑉.  0
1

2.

Is the zero vector in 𝑉?   YES3.

Is 𝑉 a subspace?  1
0
+

0
1

=
1
1

∴No4.

Section 2.9: Dimension and Rank

Choice of Basis
Key idea:
There are many possible choices of basis for a subspace. Our choice can give us dramatically different properties.

Example: sketch 𝑏⃗ + 𝑏⃗ for the two different coordinate systems below.

𝑏⃗ + 𝑏⃗

𝑏⃗ 𝑏⃗

𝑏⃗ + 𝑏⃗

𝑏⃗

𝑏⃗

Coordinates
Let 𝐵 = 𝑏⃗, … , 𝑏 ⃗ be a basis for a subspace 𝐻. If �⃗� is in 𝐻, then the coordinates of �⃗� relative 𝐵 are the weights (scalars) 
𝑐 , … , 𝑐 so that

�⃗� = 𝑐 𝑏⃗ + ⋯ + 𝑐 𝑏 ⃗

And

[�⃗�] =

𝑐
⋮

𝑐

Is the coordinate vector of �⃗� relative to 𝐵, or the 𝐵-coordinate vector of �⃗�

Ex.1

Let 𝑣⃗ =
1
0
1

, 𝑣⃗ =
1
1
1

, �⃗� =
5
3
5

. Verify that �⃗� is in the span of 𝐵 = {𝑣⃗, 𝑣⃗}, and 

calculate [�⃗�] .

�⃗� is in the span of {𝑣⃗, 𝑣⃗} if there exists 𝑐 , 𝑐 such that 𝑐 𝑣⃗ + 𝑐 𝑣⃗ = �⃗�

1 1
0 1
1 1

5
3
5

~
1 1
0 1
0 0

5
3
0
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Thus, �⃗� = 2𝑣⃗ + 3𝑣⃗

[�⃗�] =
2
3

Dimension
Definition
The dimension (or cardinality) of a non-zero subspace 𝐻, dim 𝐻, is the number of vectors in a basis of 𝐻. We define 
dim{0} = 0

Theorem
AnyÊtwoÊchoicesÊofÊbasisÊ𝐵 andÊ𝐵 ofÊaÊnon-zeroÊsubspaceÊ𝐻 haveÊtheÊsameÊdimension.

Examples:
dim ℝ = 𝑛1.
𝐻 = {(𝑥 , … , 𝑥 ) ∶ 𝑥 + ⋯ + 𝑥 = 0} has dimension 𝑛 − 12.
dim(𝑁𝑢𝑙𝑙 𝐴) is the number of free variables3.
dim(𝐶𝑜𝑙 𝐴) is the number of pivot variables4.

(1 … 1)

𝑥
⋮

𝑥
= 0,    �⃗� =

⎝

⎜
⎛

−𝑥 −𝑥
𝑥

𝑥

⋯ −𝑥

⋱
𝑥 ⎠

⎟
⎞

Proof: Assume #𝐵 > #𝑥

(𝑣 , … , 𝑣 ) (𝑣 , … , 𝑣 ) ∶ 𝑛 > 𝑚

𝑣⃗ = 𝑎 𝑣⃗ + ⋯ + 𝑎 𝑣 ⃗
⋮

𝑣⃗ = 𝑎 𝑣⃗ + ⋯ + 𝑎 𝑣⃗

𝐴 =

𝑎 ⋯ 𝑎
⋮ ⋱ ⋮

𝑎 ⋯ 𝑎
↓ ↓

[𝑣⃗] [𝑣⃗]

Columns are linearly dependent
→ {𝑣⃗, … , 𝑣⃗} are linearly dependent

→ Not a basis

Rank
Definition
The rank of matrix 𝐴 is the dimension of its column space.

Ex.2 Compute rank(𝐴) and dim𝑁𝑢𝑙(𝐴)

2 5 −3
4 7 −4

−4 8
−3 9

6 9 −5
0 −9 6

2 4
5 −6

~ ⋯ ~

2 5 −3
0 −3 2

−4 8
5 −7

0 0 0
0 0 0

4 −6
0 0

3 pivot columns
Rank(𝐴) = 3

dim𝑁𝑢𝑙𝑙(𝐴)= 2

Rank, Basis, and Invertibility Theorems
Theorem (Rank Theorem)
IfÊaÊmatrixÊ𝐴 hasÊ𝑛 columns,ÊthenÊRankÊ𝐴 + dim(𝑁𝑢𝑙 𝐴) = 𝑛

Theorem (Basis Theorem)
AnyÊtwoÊbasisÊforÊaÊsubspaceÊhaveÊtheÊsameÊdimension

Theorem (Invertibility Theorem)
LetÊ𝐴 beÊaÊ𝑛 × 𝑛 matrix.ÊTheseÊconditionsÊareÊequivalent

𝐴 is invertible.1.
The columns of 𝐴 are a basis for ℝ .2.
Col 𝐴 = dim(𝐶𝑜𝑙 𝐴) = 𝑛.3.
Null 𝐴 = 0⃗ .4.

Examples
If possible give an example of a 2 × 3 matrix 𝐴, that is in RREF and has the given properties.

Rank(𝐴) = 3a)

Not possible

Rank(𝐴) = 2b)

𝐴 =
1 0 ∗
0 1 ∗

or 0 1 0
0 0 1

or 0 0 1
0 0 0

dim𝑁𝑢𝑙𝑙(𝐴)= 2c)



𝐴 =
1 ∗ ∗
0 0 0

or 0 1 ∗
0 0 0

or 0 0 1
0 0 0

Null 𝐴 = 0⃗d)

Not possible



Notes:

Section 3.1: Introduction to Determinants

A Definition of the Determinant
Suppose 𝐴 is 𝑛 × 𝑛 and has elements 𝑎 .

If 𝑛 = 1, 𝐴 = 𝑎 , , and has determinant det 𝐴 = 𝑎 , .1.
Inductive case: for 𝑛 > 1,

det 𝐴 = 𝑎 , det 𝐴 , − 𝑎 , det 𝐴 , + ⋯ + (−1) 𝑎 , det 𝐴 ,

2.

where 𝐴 , is the submatrix obtained by eliminating row 𝑖 and columns 𝑗 of 𝐴.

Example

𝐴 =

⎝

⎛

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗⎠

⎞ ⇒ 𝐴 ,

∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗
∗ ∗

Ex.1

𝑎 −

| 𝑑

| 𝑏
𝑐 −

Compute det
𝑎 𝑏
𝑐 𝑑

det 𝑎 𝑏
𝑐 𝑑

= 𝑎 det𝐴 , − 𝑏 det𝐴 , = 𝑎𝑑 − 𝑏𝑐

Ex.2
Notation det(𝐴) = |𝐴|

Compute det
1 −5 0
2 4 −1
0 2 0

=
1 −5 0
2 4 −1
0 2 0

1 − −

| 4 −1
| 2 0

− −5 −

2 | −1
0 | 0

− − 0

2 4 |
0 2 |

∴ |𝐴| = 1 × det𝐴 , − (−5) det𝐴 , + 0 det𝐴 ,

=
4 −1
2 0

+ 5
2 −1
0 0

+ 0 = 2

Cofactor
Cofactors give us a more convenient notation for determinants.
Definition: Cofactor

The (𝑖, 𝑗) cofactor of an 𝑛 × 𝑛 matrix 𝐴 is
𝐶 , = (−1) det 𝐴 ,

The pattern for the negative signs is

⎝

⎜
⎛

+ −
− +
+ −

+ − ⋯
− + ⋯
+ − ⋯

− +
⋮ ⋮

− + ⋯
⋮ ⋮ ⎠

⎟
⎞ det(𝐴) = 𝑎 , det𝐴 , − 𝑎 , det𝐴 , + ⋯

= 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + ⋯

Theorem
The determinant of a matrix 𝐴 can be computed down any row or  column of the matrix. For instance, down the 𝑗 column, the determinant is

det (𝐴) = 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + ⋯

This gives us a way to calculate determinants more efficiently

Ex.3

Compute the determinant of 

5 4
0 1

3 2
2 0

0 −1
0 1

1 0
1 3

|𝐴| = 5𝐶 , + 0𝐶 , + 0𝐶 , + 0𝐶 ,

= 5(−1)
1 2 0

−1 1 0
1 1 3

= 5 × 3 × 𝐶 , = 15 × (−1) ×
1 2

−1 1
× ( )×

= 15 × 1 × 3 = 45

Triangular Matrices
Theorem
If 𝐴 is a triangular matrix then

det 𝐴 = 𝑎 , 𝑎 , 𝑎 , ⋯ 𝑎 , .
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Ex.4
Compute the determinant of the matrix. Empty elements are zero.

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 1

2 1
2 1

2 1

2 1
2 1

2⎦
⎥
⎥
⎥
⎥
⎥
⎤

|𝐴| = 2 = 128

Computational Efficiency
Note that computation of a co-factor expansion for an 𝑁 × 𝑁 matrix requires roughly 𝑁! multiplications.

A 10 × 10 matrix requires roughly 10! = 3.6 million multiplications•
A 20 × 20 matrix requires 20! ≈ 2.4 × 10 multiplications•

Co-factor expansions may not be practical, but determinants are still useful.
We will explore other methods for computing determinants that are more efficient.•
Determinants are very useful in multivariable calculus for solving certain integration problems. •

Section 3.2: Properties of the Determinant

Row Operations
We saw how determinants are difficult or impossible to compute with a cofactor expansion for large 𝑁.•
Row operations give us a more efficient way to compute determinants.•

Theorem: Row Operations and the Determinant
Let 𝐴 be a square matrix.

If a multiple of a row of 𝐴 is added to another row produce 𝐵, then det 𝐵 = det 𝐴.1.
If two rows are interchanged to produce 𝐵, then det 𝐵 = − det 𝐴.2.
If one row of 𝐴 is multiplied by a scalar 𝑘 to produce 𝐵, then det 𝐵 = −𝑘 det 𝐴.3.

𝐴 =
𝑎 𝑏
𝑐 𝑑

|𝐴| = 𝑎𝑑 − 𝑏𝑐

R2 ← R2 + kR11.
𝑎 𝑏

𝑐 + 𝑘𝑎 𝑑 + 𝑘𝑏
= 𝑎(𝑑 + 𝑘𝑏) − 𝑏(𝑐 + 𝑘𝑎) = |𝐴|

R1 ⟷ R22.
𝑐 𝑑
𝑎 𝑏

= 𝑐𝑏 − 𝑎𝑑 = −|𝐴|

R1 ← kR13.
𝑘𝑎 𝑘𝑏
𝑐 𝑑

= 𝑘𝑎𝑑 − 𝑘𝑏𝑐 = 𝑘|𝐴|

Question: 𝐴 ∈ ℝ × |𝐴| = 3

|2𝐴| = 8|𝐴| = 24

|𝐼 | =
1 0 0
0 1 0
0 0 1

= 1 |3𝐼 | =
3 0 0
0 3 0
0 0 3

= 27



𝐴 =
1 2 3
4 5 6
7 8 9

𝑀 , =
1 2
7 8

Determinants
Let 𝐴 be a 𝑛 × 𝑛 matrix•
Let 𝑀 , "(𝑖, 𝑗) minor" be a matrix obtained by deleting the 𝑖 row, and the 𝑗 column•
Let 𝐶 , 𝑗 "(𝑖, 𝑗) cofactor" is (−1) det𝑀 ,•
det(𝐴) = 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + ⋯ + 𝑎 , 𝐶 ,

= 𝑎 , 𝐶 , + 𝑎 , 𝐶 , + ⋯ + 𝑎 , 𝐶 ,

•

𝐴 = [𝑢 �⃗�]

v
𝐴𝑟𝑒𝑎

= 4 u

⟹ |det(𝐴)| = 4

Worksheet 3.1 to 3.3, Determinants
Worksheet Exercises

Discuss the computational efficiency of computing det(𝐴) by cofactor expansion and by row operations. Which 
method is computationally better if 𝐴 is a 𝑛 × 𝑛 and 𝑛 is large? (Compare how many arithmetic operations it 
takes).

For row operations, it would take 𝑁 steps to compute det(𝐴). For cofactor expansion, you would need 𝑁!
Steps. Hence, when 𝑁 is large, or even greater than ≈ 5.037, the row operations method would require less 
steps and would therefore be more computationaly efficient.

1.

Use a determinant to identify all values of 𝑡 and 𝑘 such that the are the matricies are singular. Assume that 𝑡 and 𝑘
must be real numbers.

𝐴 =
3 5
5 3

− 𝑡𝐼

det 𝐴 = (3 − 𝑡) − 25 = 0 ⇒ 𝑡 − 6𝑡 − 16 = 0 ⟹ (𝑡 − 8)(𝑡 + 2) = 0 ⇒ 𝑡 = −8, 2i.

a.

𝐵 =
0 1 𝑡

−3 10 0
0 5 𝑘

det 𝐵 = 3
1 𝑡
5 𝑘

= 0 ⇒ 3𝑘 − 15𝑡 = 0 ⇒ 𝑘 = 5𝑡i.

b.

2.

Let [�⃗� �⃗� 𝑐 𝑑] be a 4 × 4 matrix whose determinant is equal to 2. Compute the value of the determinant 
[𝑑 �⃗� 3𝑐 �⃗�].

[�⃗� �⃗� 𝑐 𝑑] ⟹ det = 2
[𝑑 �⃗� 3𝑐 �⃗�] ⟹ det = 2(−1)(3) = −6

3.

𝑅 is the parallelogram determined by 𝑝⃗ =
3
4
, and 𝑝⃗ =

2
2
. If 𝐴 =

1 −1
1 1

, what is the area of the image of 𝑅

under the map �⃗� ↦ 𝐴�⃗�?

|det 𝑅| =
3 2
4 2

= |6 − 8| = 2a.

det 𝐴 =
1 −1
1 1

= 1 + 1 = 2b.

Therefore the area of the image of 𝑅 under the map �⃗� ↦ 𝐴�⃗� is 2 × 2 = 4c.

4.

𝑇 = 𝐴�⃗�, where 𝐴 ∈ ℝ × , is a linear transformation that first rotates vectors in ℝ counterclockwise by 𝜃 radians 
about the origin, then reflects them through the line x1 = x2. By inspection, what is the value of the determinant of 
𝐴? You should compute its value to check your answer.

det 𝐴 = det 𝐹 × det 𝑅 = (−1)(1) = −1a.

5.
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Ex.1

Compute 
1 −4 2

−2 8 −9
−1 7 0

|𝐴| =
𝑅 ← 𝑅 + 2𝑅

𝑅 ← 𝑅 + 𝑅

1 −4 2
0 0 −5
0 3 2

𝑅 ⟷ 𝑅
0 0 −5
1 −4 −2
0 3 2

= (−1) × 1 × 3 × (−5) = 15

Invertibility
Important practical implication: If 𝐴 is reduced to echelon form, by 𝑟 interchanges of rows and columns, then

|𝐴| =
(−1) × (𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑝𝑖𝑣𝑜𝑡𝑠), 𝑤ℎ𝑒𝑛 𝐴 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒

0, , 𝑤ℎ𝑒𝑛 𝐴 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

𝐴

𝐸

→

𝐸

→ ⋯

𝐸

→
𝑈 =

𝑥 ⋯ 𝑥
⋱ ⋮

𝑥

Ex.2 Compute the determinant

|𝐴| =

0 1
2 5

2 −1
−7 3

0 3
−2 −5

6 2
1 2

𝑅 ← 𝑅 + 𝑅
~

𝑅 ⟷ 𝑅
(−1)

2 5
0 1

−7 3
2 −1

0 3
0 0

6 2
−3 5

𝑅 ← 𝑅 − 3𝑅
~

𝑅 ⟷ 𝑅
(−1)(−1)

2 5
0 1

−7 3
2 −1

0 0
0 0

−3 5
0 5

= 2 × 1 × (−3) × 5 = −30

Properties of the Determinant
For any square matrices 𝐴 and 𝐵, we can show the following.

det 𝐴 = det 𝐴 .1.
𝐴 is invertible if and only if det 𝐴 ≠ 0.2.
det(𝐴𝐵) = det 𝐴 det 𝐵.3.

2. and 3. combined: if 𝐴 is invertbile, then

|𝐴 | =
1

𝐴

|𝐴||𝐴 | = |𝐼 | = 1

Proof of (1):

𝐴

𝐸

→

𝐸

→ ⋯

𝐸

→
𝑈 =

𝑥 ⋯ 𝑥
⋱ ⋮

𝑥
"form": R3 ← R3 + 2R1

𝐸 =
1 0 0
0 1 0
2 0 1

,                    𝐸 =
1 0 2
0 1 0
0 0 1

|𝐸| = 1 = |𝐸 |
"form": R3 ⟷ R1

𝐸 =
0 0 1
0 1 0
1 0 0

= 𝐸

Finally 𝑈 = 𝐸 … 𝐸 𝐸 𝐴
Using 3. |𝑈| = |𝐸 | … |𝐸 ||𝐸 ||𝐴|

𝑈 = 𝐸 … 𝐸 𝐸 𝐴
|𝑈 | = 𝐸 … 𝐸 𝐸 |𝐴 |

⟹ |𝐴| = |𝐴 | *we can do elementary row operations

Additional Example
Use a determinant to find all values of 𝜆 such that matrix 𝐶 is not invertible.

𝐶 =
5 0 0
0 0 1
1 1 0

− 𝜆𝐼

𝐶 − 𝜆𝐼 =
5 0 0
0 0 1
1 1 0

−
𝜆 0 0
0 𝜆 0
0 0 𝜆

=
5 − 𝜆 0 0

0 −𝜆 1
1 1 −𝜆

𝐶 − 𝜆𝐼 is not invertible if |𝐶 − 𝜆𝐼 | = 0

5 − 𝜆 0 0
0 −𝜆 1
1 1 −𝜆

= (5 − 𝜆) −𝜆 1
1 −𝜆

= (5 − 𝜆)(𝜆 − 1) = (5 − 𝜆)(1 − 𝜆)(𝜆 + 1);

Hence, 𝐶 − 𝜆𝐼 is not invertible if 𝜆 = ±1 ∨ 5
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Additional Example
Determine the value of

det 𝐴 = det
0 2 0
1 1 2
1 1 3

By the property of 3:  |𝐴𝐵| = |𝐵||𝐴|

→ |𝐵 | = |𝐵|

|𝐵| =
0 2 0
1 1 2
1 1 3

= −2
1 2
1 3

= −2

∴ |𝐴| = |𝐵| = (−2) = 256

Section 3.3: Volume, Linear Transformation

Determinants, Area and Volume
In ℝ , determinants give us the area of a parallelogram.

𝑏
(3) (2) (𝑎 + 𝑐, 𝑏 + 𝑑)

(𝑐, 𝑑)

𝑑

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

(1) 𝑎𝑑 − 𝑏𝑐 (1)

(𝑑, 𝑏)
(2) (3)

Area of parallelogram = det
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

Area = 𝐴𝑟𝑒𝑎(𝐿𝑎𝑟𝑔𝑒 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒) − 2𝐴𝑟𝑒𝑎(1) + 𝐴𝑟𝑒𝑎(2) + 𝐴𝑟𝑒𝑎(3)= (𝑎 + 𝑐)(𝑏 + 𝑑) − 2 𝑐𝑑 + 𝑎𝑏 + 𝑏𝑐

= 𝑎𝑑 + 𝑎𝑏 + 𝑐𝑑 + 𝑏𝑐 − 𝑐𝑑 − 𝑎𝑏 − 2𝑏𝑐 = 𝑎𝑑 − 𝑏𝑐

=
𝑎 𝑏
𝑐 𝑑



Practice Worksheet

Find the determinant of 
1 −2 0
0 0 3
0 1 0

via row reducation

det
1 −2 0
0 0 3
0 1 0

~ − det
1 −2 0
0 1 0
0 0 3

= −(3) = −3

1.

Let 𝐴 ∈ ℝ × be the matrix whose (𝑖, 𝑗) entry is min{𝑖, 𝑗}. Find det 𝐴
Testing for when 𝑛 = 1,2,3,4a.
det[1] = 1b.

det
1 1
1 2

= det
1 1
0 1

= 1c.

det
1 1 1
1 2 2
1 2 3

= det
1 1 1
0 1 1
0 0 1

= 1d.

det

1 1
1 2

1 1
2 2

1 2
1 2

3 3
3 4

= det

1 1
0 1

1 1
1 1

0 0
0 0

1 1
0 1

= 1e.

∴ det 𝐴 = 1f.

2.

Find the area of the triangle 2
3

,
3
4

,
1
4

2 3 1
3 4 4

a.

Substracting by 2
3

so that the origin is at (0,0)b.
0
0

1 −1
1 1

c.

Hence, 𝐴𝑟𝑒𝑎 = det
1 −1
1 1

= (2) = 1d.

3.

Suppose 𝐴 ∈ ℝ × , the entries in 𝐴 are integers, and det 𝐴 = 1. Then the entries of 𝐴 are also integers.
Truea.

4.

𝐴 ∈ ℝ × is one-to-one if and only if det 𝐴 = 0.
Falsea.

5.

A matrix 𝐴 ∈ ℝ × maps regions of area 1 to regions of area 2 if and only if det 𝐴 = 2
Falsea.

6.

Suppose 𝐴 ∈ ℝ × has a 0 diagonal. Then det 𝐴 = 0.
Falsea.

7.

Suppose 𝐴 ∈ ℝ × and 𝐶𝑜𝑙(𝐴) is spanned by 𝑛 − 1 vectors. Then det 𝐴 = 0
Truea.

8.

Complete the sentence "The more cheese, the more holes. The more holes, the less cheese. Therefore,
Cheese ∝ # holesa.

9.
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Notes:

Determinants as Area or Volume
Theorem
The volume of the parallel piped spanned by the columns of an 𝑛 × 𝑛 matrix 𝐴 is |det 𝐴|.

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors �⃗�, 𝑐�⃗� + �⃗�, 
for any scalar 𝑐.

𝑎 𝑎 + 𝐿
𝑎 + 𝑐𝑎

𝐿

𝑎
𝑐𝑎 0

Ex.1
Calculate the area of the parallelogram determined by the points (−2,2), (0,3), (4, −1), (6,4)

(8,6)
(6,4) (2,5)

(0,3)

(4, −1)
(−2, −2) (6,1)

(0,0)

Area = |𝑢 �⃗�| =
2 6
5 1

= |−28| = 28

Linear Transformations
Theorem
If 𝑇 : ℝ ↦ ℝ , and 𝑆 is some parallelogram in ℝ , then

volume𝑇 (𝑆)= |det(𝐴)| volume(𝑆)

𝐵 ∈ ℝ × → 𝑆: parallelogram spanned by the columns of 𝐵

Volume 𝑇 (𝑆)= |det 𝐴| Volume(𝑆) = |det 𝐴| |det 𝐵|

|det 𝐴𝐵| = |det 𝐴| |det 𝐵|

Section 4.9: Applications to Markov Chains
Ex.1

A small town has two libraries, 𝐴 and 𝐵.•
After 1 month, among the books checked out of 𝐴.

80% returned to 𝐴○
20% returned to 𝐵○

•

After 1 month, among the books checked out of 𝐵.
30% returned to 𝐴○
70% returned to 𝐵○

•

If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After 𝑛
month? A place to simulate this is http://setosa.io/markov/index.html

0.8                                                       0.7

0.3
A                                                         B

0.2
Ex.1 Continued

The books are equally divided by between the two branches, denoted by 𝑥⃗ =
.5
.5

. What is the distribution after 1 

month, call it 𝑥⃗? After two month?

𝑥⃗ =
0.8𝑥 𝐴 0.3𝑥 𝐵
0.2𝑥 𝐴 0.7𝑥 𝐵

=
0.8 0.3
0.2 0.7

𝑥⃗ =
0.55
0.45

𝑥⃗ =
0.8𝑥 𝐴 0.3𝑥 𝐵
0.2𝑥 𝐴 0.7𝑥 𝐵

= 𝑃𝑥⃗ = 𝑃(𝑃𝑥⃗) = 𝑃 𝑥⃗

After 𝑘 months, the distribution is 𝑥 ⃗, which is what in terms of 𝑥⃗?

After 𝑘 months:
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𝑥 ⃗ = 𝑃 𝑥⃗

Markov Chains
A few definitions:

A probability vector is a vector, �⃗�, with non-negative elements that sum to 1.

Ex: 0
1
,

⁄

⁄
,

⁄

⁄

⁄

,

⁄
0
⁄

⁄

, …○

•

A stochastic matrix is a square matrix, 𝑃, whose columns are probabiltiy vectors.•
A Markov chain is a sequence of probability vectors, 𝑥 ⃗, and a stochastic matrix 𝑃, such that:

𝑥 ⃗ = 𝑃𝑥 ⃗, 𝑘 = 0,1,2, …
•

A steady-state vector for 𝑃 is a probability vector �⃗� such that 𝑃�⃗� = �⃗�•

Ex.2
Determine a steady-state vector for the stochastic matrix

.8 .3

.2 .7
Steady-state vector: 𝑃�⃗� = �⃗�

𝑃�⃗� − �⃗� = 0

(𝑃 − 𝐼)�⃗� = 0⃗

−0.2 0.3
0.2 −0.3

0
0

~
−2 3
0 0

0
0

: 1 free variable; line of solution 

Example: �⃗� =
3
2
steady-state vector: 3

2
=

0.6
0.4

After a long time: 60% of books in 𝐴
40% of books in 𝐵

Convergence
We often want to know what happens to a process,

𝑥 ⃗ = 𝑃𝑥 ⃗, 𝑘 = 0,1,2, …
as 𝑘 → ∞

Definition: a stochastic matrix 𝑃 is regular if there is some 𝑘 such that 𝑃 only contains strictly positive entries.

Theorem
If 𝑃 is a regular stochastic matrix, then 𝑃 has a unique steady-state vector �⃗�, and 𝑥 ⃗ = 𝑃𝑥 ⃗ converges to �⃗� as 𝑘 → ∞.

Ex: 𝑃 =
0.8 0.3
0.2 0.7

→ regular

𝑃 =
1 0 0
0 1 0
0 0 1

→ 𝑃 , for any 𝑘 → not regular

𝑃 =
1 ⁄

0 ⁄
𝑃 =

1 ∗
0 ∗

… not regular

𝑃 =

⁄ 0 ⁄

⁄ 1 ⁄

⁄ 0 ⁄

= 𝑃 =
∗ 0 ∗
∗ 1 ∗
∗ 0 ∗

→ not regular

𝑃 =

⁄ ⁄ ⁄

⁄ ⁄ ⁄

0 ⁄ ⁄

→ regular claim: 𝑃 has no zero entry



Notes:

Stochastic Vectors in the Plane
The stochastic vectors in the plane are the line segment below, and a stochastic matrix maps stochastic vectors to 
themselves.  Iterates 𝑃 𝑥⃗ converge to the steady state.

Steady State Vector
1

𝑥⃗

𝑥⃗
𝑥 ⃗ = �⃗�: Steady-state vector
𝑃 → [𝑥 ⃗ 𝑥 ⃗]; 𝑘 → +∞

𝑥⃗
𝑥⃗

1
𝑃 →⏟

→

(�⃗� �⃗�)

From the previous theorem"
For any 𝑥⃗: 𝑥 ⃗: 𝑃 𝑥⃗ →⏟

→

�⃗�

Take 𝑥⃗ = 𝑅⃗ =
1
0

𝑥 ⃗ = 𝑃 𝑥⃗

⃗

→⏟
→

�⃗�⏟

Do the same thing with 𝑥⃗ = 𝑒⃗: 2 column of 𝑃

Ex.3
A car rental company has 3 rental locations, A, B, and C. Cars can be returned at any location. The table below gives the 
pattern of rental and returns for a given week.

Rented from

Returned to A B C

A .8 .1 .2

B .2 .6 .3

C .0 .3 .5

There are 10 cars at each location today.
Construct a stochastic matrix, 𝑃, for this problem.a)
What happens to the distribution of cars after a long time?  You may assume that 𝑃 is regular.b)

.8                                            .1                                           .6
A                                                         B

.2

.2                            .3                      .3

.5               C

𝑃 =
.8 .1 .2
.2 .6 .3
.0 .3 .5

Is 𝑃 regular? YES
𝑝 has no 0 entries

𝑃�⃗� = �⃗�: (𝑃 − 𝐼)�⃗� = 0

−0.2 0.1 0.2
0.2 −0.4 0.3
0 0.3 −0.5

0
0
0

𝑅 ← 𝑅 + 𝑅
~

−2 1 2
0 −3 5
0 3 −5

0
0
0

𝑅 ← 𝑅 + 𝑅
~

−2 1 2
0 −3 5
0 0 0

0
0
0

𝑅 ← 3𝑅 + 𝑅
~

−6 0 11
0 −3 5
0 0 0

0
0
0

⎩
⎪
⎨

⎪
⎧

𝑥 =
11

6
𝑥

𝑥 =
5

3
𝑥
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Take 𝑥 = 6: �⃗� =
11
10
6

Then: �⃗� =
11
10
6

Solution to 𝑃�⃗� = �⃗�: �⃗� = 𝑐
11
10
6

, 𝑐 ∈ ℝ

The stochastic vectors in ℝ , are vectors 
𝑠
𝑡

1 − 𝑠 − 𝑡
, where 0 ≤ 𝑠, 𝑡 ≤ 1 and 𝑠 + 𝑡 ≤ 1. 𝑃 'contracts' stochastic vectors 

to 𝑥 .
(1,0,0)

𝑥⃗ 𝑥⃗

𝑥⃗ 𝑥⃗ 𝑥 ⃗

(0,0,1) (0,1,0)

Section 5.1: Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues
If 𝐴 ∈ ℝ × , and there is a �⃗� ≠ 0 in ℝ , and

𝐴�⃗� = 𝜆�⃗�
Then �⃗� is an eigenvector for 𝐴, and 𝜆 ∈ ℂ is the corresponding eigenvalue.

Note that
We will only consider square matrices.•
If 𝜆 ∈ ℝ, then

when 𝜆 > 0, 𝐴�⃗� and �⃗� point in the same direction○
when 𝜆 < 0, 𝐴�⃗� and �⃗� point in opposite directions○

•

Even when all entries of 𝐴 and �⃗� are real, 𝜆 can be complex (a rotation of the plane has no real eigenvalues.)•
We explore complex eigenvalues in Section 5.5.•

Ex.1

Which of the following are eigenvectors of 𝐴 =
1 1
1 1

? What are the corresponding eigenvalues?

𝑣⃗ =
1
1

𝐴𝑣⃗ =
2
2

= 2𝑣⃗

𝑣⃗ is an eigenvector the eigenvalue 2.a.

a)

𝑣⃗ =
1

−1
𝐴𝑣⃗ =

0
0

= 0𝑣⃗

𝑣⃗ is an eigenvector the eigenvalue 0.a.

b)

𝑣⃗ =
0
0

𝐴𝑣⃗ =
0
0

𝑣⃗ is not an eigenvector. (it is 0⃗)a.

c)

𝑣⃗ =
𝑘
𝑘

𝐴𝑣⃗ =
2𝑘
2𝑘

= 2𝑣⃗

𝐴𝑣⃗ = 𝐴(𝑘𝑣⃗) = 𝑘𝐴𝑣⃗ = 𝑘(2𝑣⃗) = 2𝑣⃗a.
If �⃗� is an eigenvector for 𝜆, so is 𝑘�⃗� for any 𝑘 ≠ 0.b.

d)

𝑣⃗ =
2
0

𝐴𝑣⃗ =
2
2

=? 𝜆
2
0

𝑣⃗ is not an eigen vector
(∆𝑣⃗ = 𝑣⃗ + 𝑣⃗)i.

a.

e)

Ex.2

Confirm that 𝜆 = 3 is an eigenvalue of 𝐴 =
2 −4

−1 −1

We look for �⃗� ≠ 0 such that 𝐴�⃗� = 𝜆�⃗�
𝐴�⃗� = 3�⃗�

(𝐴 − 3𝐼)�⃗� = 0⃗

𝐴 − 3𝐼 =
2 −4

−1 −1
−

3 0
0 3

=
−1 −4
−1 −4

: singular

Then there exists �⃗� ≠ 0 such that (A − 3I)�⃗� = 0⃗
Meaning: 𝐴�⃗� = 3�⃗�

Eigenspace
Definition
Suppose 𝐴 ∈ ℝ × . The eigenvectors for a given 𝜆 span a subspace of ℝ called the 𝜆-eigenspace of 𝐴.

Note: the 𝜆-eigenspace for matrix  𝐴 is Nul(𝐴 − 𝜆𝐼) = {𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠} ∪ 0⃗

Ex.3
Construct a basis for the eigenspaces for the matrix whose eigenvalues are given, and sketch the eigenvectors.

5 −6
3 −4

, 𝜆 = −1,2

𝐴�⃗� = 𝜆�⃗� ⟺ (𝐴 − 𝜆𝐼)�⃗� = 0⃗



⟺ �⃗� ∈ Nul(�⃗� − 𝜆𝐼)

Theorems
Proofs for the most these theorems are in Section 5.1. If time permits, we will explain or prove all/most of these 
theorems in lecture.

The diagonal elements of a triangular matrix are its eigenvalues.1.
𝐴 invertible ⟺ 0 is not an eigenvalue of 𝐴.2.
Stochastic matrices have an eigenvalue equal to 1.3.
If 𝑣⃗, 𝑣⃗, … , 𝑣 ⃗ are eigenvectors that correspond to distinct eigenvalues, then 𝑣⃗, 𝑣⃗, … , 𝑣 ⃗ are linearly 
independent.

4.



Def: a matrix is regular if 𝑃 has all positive entries for some 𝑛.

⁄ ⁄
⁄

Rainy                                    ⁄ Sunny

What's the probability of being sunny in many many days? ⁄•

Transition matrix 𝑃 =
𝑅
𝑆

⁄ ⁄

⁄ ⁄

What's the probability of it being sunny in 2 days given that it is rainy today?•
𝑃
Steady state: a vector 𝑥 such that 𝑃𝑥 = 𝑥•
− 1

2
1

4
1

2 − 1
4

~
1 − 1

2
0 0

⇒ 𝑥 = 𝑥 ⇒ 𝑥 = 2𝑥

𝑥 + 𝑥 = 1

⇒ 3𝑥 = 1 ⇒ 𝑥 = 1
3 ⇒ 𝑥 = 2

3

Steady-state vector: 
⁄

⁄

Worksheet 4.9, Applications to Markov Chains

Worksheet Exercises
Determine whether 𝑃 and 𝑄 are a regular stochastic matricies.

𝑃 =
.8 0
.2 1

𝑄 =
1 2 0
0 1 2
3 1 2

1.

𝑃:
.8 0
.2 1

.8 0

.2 1
= .64 0

.35 1
NO

𝑄:
1 2 0
0 1 2
3 1 2

1 2 0
0 1 2
3 1 2

=
1 4 4
6 3 6
9 9 6

YES 

Consider the Markov chain below2.

⁄
B

⁄ ⁄ ⁄

A                                                                     C                      ⁄
⁄

What is the transition matrix? Calculate the steady-state vector.

Transition Matrix:

⎣
⎢
⎢
⎢
⎡
1

2 0 1
4

1
2

1
2 0

0 1
2

3
4⎦

⎥
⎥
⎥
⎤

Steady-state vector calculation:
(𝑃 − 𝐼)�⃗� = 0⃗

⎣
⎢
⎢
⎡− 1

2 0

1
2 − 1

2

0 1
2

1
4 0

0 0

− 1
4 0

⎦
⎥
⎥
⎤

→

− 1
2 0

0 − 1
2

0 0

1
4 0

1
4 0

0 0

− 1
2 𝑥 + 1

4 𝑥 ⇒ 𝑥 = 1
2 𝑥

− 1
2 𝑥 + 1

4 𝑥 ⇒ 𝑥 = 1
2 𝑥

�⃗� = 𝑥

1
2

1
2

1

𝑥 = 2:  
1
1
2

∴ �⃗� =

⎣
⎢
⎢
⎡
1

4
1

4
1

2⎦
⎥
⎥
⎤

Suppose there are two cities, 𝑋 and 𝑌. Every year,3.
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70% of people from 𝑋 stay in 𝑋, the remaining 30% move to 𝑌.○
40% of people from 𝑌 stay in 𝑌, the remaining 60% move to 𝑋.○

The initial populations of 𝑋 and 𝑌 are 100 and 200, respectively.
What is the stochastic matrix that represents this situation?a.

𝑃 =
0.7 0.6
0.3 0.4

After a long period of time, what is the population in city 𝑋?b.
(𝑃 − 𝐼)�⃗� = 0⃗

0.7 0.6
0.3 0.4

−
1 0
0 1

=
−0.3 0.6
0.3 −0.6

~
−0.3 0.6

0 0
~

−1 2
0 0

⇒ 𝑡
1
2

⇒
2

3
1

3
∴ population of 𝑥 = ⁄ (total) = ⁄ (300) = 200

Written Explanation Exercise Let 𝑃 be a stochastic 𝑛 × 𝑛 matrix with positive entries. Give two methods of 
finding the steady state solution

Solve [𝑃 − 𝐼 | 0]○
Steady state is ≈any column of 𝑃 for larger 𝑘 (only true for regular)○

4.

A mouse lives in a maze that has at least three rooms. Each room is connected to at least one other room (in other 
words, every room is connected). At every hour, the mouse moves from the room where it is in, to one of the 
rooms it is connected to, with equal probability.

Design any mouse maze and its corresponding transition matrix 𝑃.a.

A                                   B                                     C

Is your 𝑃 regular stochastic?
No

b.

In the long run, is there a room that the mouse is more likely to be in at a given time? If so, which room?c.

5.

Note:ÊthisÊproblemÊisÊrelatedÊtoÊtheÊPageRankÊproblemÊthatÊweÊexploreÊlaterÊinÊthisÊclass

𝑃 =

0 1
2 0

1 0 1

0 1
2 0

(𝑃 − 𝐼)�⃗� = 0⃗ ⇒

−1 1
2 0

1 −1 1

0 1
2 −1

~

0 − 1
2 1

1 0 −1

0 1
2 −1

~
1 0 −1
0 1 −2
0 0 0

𝑥 = 𝑥
𝑥 = 2𝑥

𝑥 + 𝑥 + 𝑥 = 1
⇒

⎣
⎢
⎢
⎡
1

4
1

2
1

4⎦
⎥
⎥
⎤



Notes:

For 𝜆 = −1:

𝐴 − 𝜆 𝐼 = 𝐴 + 𝐼 =
6 −6
3 −3

1
1

is a basis for the (−1)-eigenspace

For 𝜆 = 2:

𝐴 − 𝜆 𝐼 = 𝐴 + 𝐼 =
3 −6
3 −6

2
1

is a basis for the 2-eigenspace

𝑥

(−1)-eigenspace
2-eigenspace

𝑥

𝑇 =
𝑑 ∗ ∗

⋱ ∗
(0) 𝑑

(𝑇 − 𝜆𝐼) =
𝑑 − 𝜆 ∗ ∗

⋱ ∗
(0) 𝑑 − 𝜆

(𝑇 − 𝜆𝐼) is singular ⟺ 𝜆 ∈ {𝑑 , 𝑑 , … , 𝑑 }

1.

Invertible ⟺ 𝐴�⃗� = 0⃗ how only the trivial solution �⃗� = 0⃗
⟺ 0 is not an eigenvalue

2.

Proof by induction:3.
If 𝑘 = 2: 𝑣⃗ → 𝜆 , 𝑣⃗ → 𝜆 : 𝜆 ≠ 𝜆

If 𝑐 𝑣⃗ + 𝑐 𝑣⃗ = 0⃗ and 𝑐 ≠ 0

Then 𝑣⃗ = − 𝑣⃗

𝐴(𝑐 𝑣⃗ + 𝑐 𝑣⃗)

⃗

= 𝑐 𝐴𝑣⃗ + 𝑐 𝐴𝑣⃗ = 𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗ = −𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗ = 𝑐 (𝜆 − 𝜆 )

⃗

= 𝑣⃗
⃗

⇒ 𝑐 = 0 ⇒ 𝑐 = 0: 𝑣⃗, 𝑣⃗ are linearly independent

Warning!
We can’t determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Ex: suppose 𝐴 =
1 1
1 1

. The eigenvalues are 𝜆 = 2,0 because

𝐴
1
1

=
1 1
1 1

1
1

=
2
2

= 2
1
1

𝐴
1

−1
=

1 1
1 1

1
−1

=
0
0

= 0
1
1

But the reduced echelon form of 𝐴 is: 1 1
0 0

•

The reduced echelon form is triangular, and its eigenvalues are: 0 and 1 (triangular matrix)•

Section 5.2: The Characteristic Equation

The Characteristic Polynomial
Recall

𝜆 is an eigenvalue of 𝐴 ⟺ (𝐴 − 𝜆𝐼) is not invertible
Therefore, to calculate the eigenvalues of 𝐴, we can solve

det(𝐴 − 𝜆𝐼) = 0
The quantity det(𝐴 − 𝜆𝐼) is the characteristic polynomial of 𝐴.
The quantity det(𝐴 − 𝜆𝐼) = 0 is the characteristic equation of 𝐴.

The roots of the characteristic polynomial are the eigenvalues of 𝐴.

Ex.1

The characteristic polynomial of 𝐴 =
5 2
2 1

is:

|𝐴 − 𝜆𝐼| =
5 − 𝜆 2

2 1 − 𝜆
= (5 − 𝜆)(1 − 𝜆) − 4 = 𝜆 − 6𝜆 + 1

So the eigenvalues of 𝐴 are:

𝜆 =
6 ± √36 − 5

2
= 3 ±

√32

2
= 3 ± 2√2

Definition
𝐴 is a matrix

Trace(𝐴) = sum of the elements of the diagonals

Characteristic Polynomial of 𝟐 × 𝟐 Matricies
Express the characteristic equation of

𝑀 =
𝑎 𝑏
𝑐 𝑑
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In terms of its determinant. What is the equation when 𝑀 is singular?

|𝐴 − 𝜆𝐼| =
𝑎 − 𝜆 𝑏

𝑐 𝑑 − 𝜆
= (𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 𝜆 + (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 𝜆 − Trace(𝑀)𝜆 + det(𝑀)

If the eigenvalues are 𝜆 and 𝜆
|𝑀 − 𝜆𝐼| == (𝜆 − 𝜆 )(𝜆 − 𝜆 ) = 𝜆 + (𝜆 + 𝜆 )𝜆 + 𝜆 𝜆

Theorem: 𝐴 and 𝐴 have the same eigenvalues
Proof:
|𝐴 − 𝜆𝐼| = |(𝐴 − 𝜆𝐼) | = |𝐴 − 𝜆𝐼 | = |𝐴 − 𝜆𝐼|

Application: If 𝑃 is stochastic 1 is an eigenvalue of 𝑃
𝑃: the sum of each column is 1
𝑃 : the sum of each row is 1

𝑃
1
⋮
1

=
1
⋮
1

: 1 is an eigenvalue of 𝑃 and therefore also for 𝑃. 



Notes:

if 𝑀 is singular: det 𝑀 = 0
|𝑀 − 𝜆𝐼| = 𝜆 − Trace(𝑀)𝜆

= 𝜆𝜆 − Trace(𝑀)

Algebraic Multiplicity
Definition:

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

if |𝐴 − 𝜆𝐼| = (𝜆 − 1) (𝜆 + 2) (𝜆 − 7)

Eigenvalues                  Algebraic Multiplicity
1                                            3

−2                                           2
7                                            1

Ex.
Compute the algebraic multiplicities of the eigenvalues for the matrix

1 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 0

Eigenvalues                  Algebraic Multiplicity
−1                                           1
0                                            2
1                                            1

Geometric Multiplicity
Definition
The geometric multiplicity of an eigenvalue 𝜆 is the dimension of Null(𝐴 − 𝜆𝐼)

Geometric multicity is always at least 1. It can be smaller then algebraic multiplicity1.
Here is the basic example

𝐴 =
0 1
0 0

−𝜆 1
0 −𝜆

= 𝜆

2.

𝜆 = 0 is the only eigenvalue. Its algebraic multiplicity is 2, but the geometric multiplicity is 1.
�⃗� ∈ Null(𝐴 − 0𝐼) = Null(𝐴)

𝐴�⃗� =
0
0

⇒ �⃗� = 𝑥
1
0

Ex.
Give an example of a 4 × 4 matrix with 𝜆 = 0 the only eigenvalue, but the geometric multiplicity of 𝜆 = 0 is one.

𝐴 =

0 1
0 0

0 0
1 0

0 0
0 0

0 1
0 0

→ 1 free variable, dimNull(𝐴)= 1

Recall: Long-Term Behavior of Markov Chains
Recall:

We often want to know what happens to a Markov Chain
𝑥 ⃗ = 𝑃𝑥 ⃗, 𝑘 = 0,1,2, …

•

as 𝑘 → ∞
If 𝑃 is regular, then there is a unique steady-state vector•

Now lets ask:
If we don’t know whether 𝑃 is regular, what else might we do to describe the long-term behavior of the system?•
What can eigenvalues tell us about the behavior of these systems?•

Example: Eigenvalues and Markov Chains
Consider the Markov Chain

𝑥 ⃗ = 𝑃𝑥 ⃗ =
0.6 0.4
0.4 0.6

𝑥 ⃗, 𝑘 = 0,1,2,3, … , 𝑥⃗ =
1
0

This system can be represented schematically with two nodes, A and B:
0.6

0.4                                                     0.6

A                                                                              B

0.4

Goal: use eigenvalues to describe the long-term behavior of our system.

What are the eigenvalues of 𝑃?

𝑃 =
0.6 0.4
0.4 0.6

𝑃 is stochasic: 1
𝜆 + 𝜆 = 1.2: 0.2
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What are the corresponding eigenvalues of 𝑃?

𝜆 = 1: (𝑃 − 𝐼 | 0) =
−0.4 0.4
0.4 −0.4

0
0

→ 𝑣⃗ =
1
1

𝜆 = 0.2: (𝑃 − 0.2𝐼 | 0) =
0.4 0.4
0.4 0.4

0
0

→ 𝑣⃗ =
1

−1

Note: {𝑣⃗, 𝑣⃗} are a basis of ℝ

Use the eigenvalues and eigenvectors of 𝑃 to analyze the long-term behavior of the system. In other words, determine 
what 𝑥 ⃗ tends to as 𝑘 → ∞.

Idea: express 𝑥⃗ in the basis 𝑣⏟⃗ , 𝑣⃗
.

:

𝑥⃗ = 𝑐 𝑣⃗ + 𝑐 𝑣⃗
𝑥⃗ = 𝑃𝑥⃗ = 𝑃(𝑐 𝑣⃗ + 𝑐 𝑣⃗)

= 𝑐 𝑃 𝑣⃗ + 𝑐 𝑃 𝑣⃗
= 𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗

𝑥⃗ = 𝑃 𝑥⃗ = 𝑃(𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗)
= 𝑐 𝜆 𝑃 𝑣⃗ + 𝑐 𝜆 𝑃 𝑣⃗

= 𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗

𝑥 ⃗ = 𝑃 = 𝑐 𝜆 𝑣⃗ + 𝑐 𝜆 𝑣⃗

but 
𝜆 = 1 = 1

𝜆 = (0.2) ⟶
→

0

Thus:
lim
→

𝑥 ⃗ = 𝑐 𝑣⃗

if 𝑥⃗ =
𝑃

1 − 𝑃
where 0 ≤ 𝑝 ≤ 1

𝑥⃗ = 𝑐 𝑣⃗ + 𝑐 𝑣⃗
𝑃

1 − 𝑃
= 𝑐

1
1
+ 𝑐

1
−1

=
𝑐 + 𝑐
𝑐 − 𝑐

𝑐 + 𝑐 = 𝑃
𝑐 − 𝑐 = 1 − 𝑃

→ 𝑐 = 1
2 , 𝑐 = 𝑃 − 1

2
Thus:

c 𝑣⃗ =
1

2
1

2

Similar Matrices
Definition

Two 𝑛 × 𝑛 matrices 𝐴 and 𝐵 are similar if there is a matrix 𝑃 so that 𝐴 = 𝑃𝐵𝑃 .
Theorem

If 𝐴 and 𝐵 are similar, then they have the same characteristic polynomial.
If time permits, we will explain or prove this theorem in lecture. Note:

Two matrices, 𝐴 and 𝐵, do not need to be similar to have the same eigenvalues. For example,

𝐴 =
0 1
0 0

and 0 0
0 0

= 𝐵

•

|𝐴 − 𝜆𝐼| =
−𝜆 1
0 −𝜆

= 𝜆 = |𝐵 − 𝜆𝐼|

but 𝑃𝐵𝑃 =
0 0
0 0

→ 𝐴 and 𝐵 are not similar
Proof

|𝐴 − 𝜆𝐼| = |𝑃𝐵𝑃 − 𝑃(𝜆𝐼)𝑃 | = |𝑃(𝐵 − 𝜆𝐼)𝑃 | = |𝑃||𝐵 − 𝜆𝐼||𝑃 | = |𝐵 − 𝜆𝐼|

Additional Examples
True or false

If 𝐴 is similar to the identity matrix, then 𝐴 is equal to the identity matrix.
If 𝐴 = (𝑃𝐼)𝑃 = 𝑃𝑃 = 𝐼i.
Trueii.

a.

𝐴 row replacement operation on a matrix does not change its eigenvalues.
1 1
1 1

1 1
0 0

i.

Falseii.

b.

1.

For what values of 𝑘 does the matrix have one real eigenvalue with algebraic multiplicity 2?
−3 𝑘
2 −6

"Highway": 𝐴 =
−3 𝑘
2 −6

i.

if 𝜆 = 𝜆 : 𝜆 + 𝜆 = Trace(𝐴) = −9
then: det(𝐴) = 18 − 2𝑘 = 𝜆 𝜆 = ⁄ ⇒ 𝑘 = − ⁄

a.

2.



Def. 𝜆 is an eigenvalue of 𝐴.
if 𝐴�⃗� = 𝜆�⃗� for some �⃗� ≠ 0⃗.
Here, 𝑥 is called an eigenvector.
(𝑥, 𝜆) is an eigenpair.

How to find eigenvalues?
𝜆 eigenvalue ⟺ 𝐴�⃗� = 𝜆�⃗� for some �⃗� ≠ 0⃗.

⟺ (𝐴 − 𝜆𝐼)�⃗� = 0⃗ some �⃗� ≠ 0⃗.
⟺ 𝐴 − 𝜆𝐼 not invertible
⟺ det(𝐴 − 𝜆𝐼) = 0.

The eigenvalues of 𝐴 are given by zeros of 𝑝(𝜆) = det(𝐴 − 𝜆𝐼), otherwise known as the characteristic polynomial of 𝐴.

Ex.

𝐴 =
0 1
1 0

𝑝(𝜆) = det
−𝜆 1
1 −𝜆

= 𝜆 − 1 = (𝜆 + 1)(𝜆 − 1) ⇒ eigenvalues are 1 and −1 (alg. mult1)

Say 𝜆 is an eigenvalue. Let 𝑆 = {�⃗�: 𝐴�⃗� = 𝜆�⃗�}. Then 𝑆 is a subspace. The geometric multiplicity of 𝜆 = dim(𝑆).

Find �⃗� such that 𝐴�⃗� = 𝜆�⃗�
( ) ⃗ ⃗

Worksheet 5.1 and 5.2: Eigenvectors and Eigenvalues, The Characteristic Equation

Worksheet Exercises
If possible, give an example of:

A 2 × 2 matrix, 𝐴 ∈ ℝ × , whose eigenvalues have non-zero imaginary components.
0 1

−1 0
i.

a.

A non-zero 2 × 2 matrix, 𝐴 ∈ ℝ × , that is not triangular, but has a zero eigenvalue.
1 1
1 1

i.

b.

1.

Determine whether 𝑢 and �⃗� are eigenvectors of 𝐴. If so, what are their eigenvalues? Do not find the characteristic polynomial.

𝐴 =
−3 −3 2
6 4 0
5 3 0

,          𝑢 =
−1
1
1

,          �⃗� =
1
1
1

𝐴𝑢 =
−3 −3 2
6 4 0
5 3 0

−1
1
1

=
2

−2
−2

Eigenvalue = −2

𝐴�⃗� =
−3 −3 2
6 4 0
5 3 0

1
1
1

=
−4
10
8

No eigenvalue

2.

𝑇 is a linear transformation in ℝ . Without constructing 𝐴, identify one eigenvalue of 𝐴.
𝑇 reflects points across the line 𝑥 = −𝑥 .

𝜆 = 1
a.

𝑇 projects points onto one of the coordinate axes.
𝜆 = 0

b.

3.

For what values of 𝑘 (if any) does 𝐴 have one real eigenvalue of algebraic multipliciy 2?

𝐴 =
−4 𝑘
2 −2

det(𝐴 − 𝜆𝐼) =
−4 − 𝜆 𝑘

2 −2 − 𝜆
= (−4 − 𝜆)(−2 − 𝜆) − 2𝑘 = 8 + 4𝜆 + 2𝜆 + 𝜆 − 2𝑘 = 𝜆 + 6𝜆 + 8 − 2𝑘 ⇒ 𝑘 = − 1

2

4.

tr(𝐴) is the sum of the elements on the main diagonal of 𝐴. If tr(𝐴) = 2, det(𝐴) = 𝐼, and 𝐴 ∈ ℝ × , compute the eigenvalues of 𝐴. Hint: 

letÊ𝐴 =
𝑎 𝑏
𝑐 𝑑

.

𝐴 =
𝑎 𝑏
𝑐 𝑑

, 𝑝(𝜆) = (𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 𝜆 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 𝜆 − 2𝜆 + 1 = (𝜆 − 1)a.

5.

Written Explanation Exercise  If  𝐴𝑣 = 𝜆𝑣 with 𝑣 ≠ 0 annd 𝐴 is invertible, can you find an eigenvalue/eigenvector of 𝐴 ? Can 𝐴 has a zero 
eigenvalue?

𝐴�⃗� = 𝜆�⃗� (�⃗� ≠ 0)a.

𝐴 𝐴 = 𝐴 𝜆�⃗� ⇒ �⃗� = 𝜆𝐴�⃗� ⇒ 𝐴 �⃗� =
1

𝜆
�⃗�

6.
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Review Session:
If 𝐴 = 𝑃𝐵𝑃 and 𝐵�⃗� = 𝜆�⃗�,

𝐴𝑤 = 𝜆𝑤 such that 𝑤 = 𝑃�⃗�
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Material Covered:
Chapter 5: Eigenvalues and Eigenvectors

Section 5.3 : Diagonalization•
Section 5.5 : Complex Eigenvalues•

Chapter 10 : Finite-State Markov Chains
Section 10.2 : The Steady-State Vector and Page Rank•

Chapter 6: Orthogonality and Least Squares
Section 6.1 : Inner Product, Length, and Orthogonality•
Section 6.2 : Orthogonal Sets•
Section 6.3 : Orthogonal Projections•
Section 6.4 : The Gram-Schmidt Process•
Section 6.5 : Least-Squares Problems•
Section 6.6 : Applications to Linear Models•
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Notes:

Section 5.3: Diagonalization

Diagonal Matrices
A matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.
2 0
0 2

,     [2],     𝐼 ,     0 0
0 0

We’ll only be working with diagonal square matrices in this course.

𝐷 =
1 0 0
0 0 0
0 0 5

Powers of Diagonal Matrices
If 𝐴 is diagonal, then 𝐴 is easy to compute. For example,

𝐴 =
3 0
0 0.5

𝐴 =
3 0
0 0.5

3 0
0 0.5

=
3 0
0 (0.5)

𝐴 =
3 0
0 (0.5)

But what if 𝐴 is not diagonal?

Diagonalization
Suppose 𝐴 ∈ ℝ × . We say that 𝐴 is diagonalizable if it is similar to a diagonal matrix, 𝐷. That is, we can write

𝐴 = 𝑃𝐷𝑃
𝐴 = 𝑃𝐷𝑃 𝑃𝐷𝑃 = 𝑃𝐷 𝑃
⋮

𝐴 = 𝑃𝐷 𝑃

Theorem:
If 𝐴 is diagonalizable ⟺ 𝐴 has 𝑛 linearly independent eigenvectors.

Note: the symbol ⟺ means "if and only if".

Also note that 𝐴 = 𝑃𝐷𝑃 if and only if

𝐴 = [𝑣⃗ 𝑣⃗ ⋯ 𝑣⃗]

𝜆
𝜆

⋱
𝜆

[𝑣⃗ 𝑣⃗ ⋯ 𝑣⃗]

Where 𝑣⃗, … , 𝑣⃗ are linearly independent eigenvectors, and 𝜆 , … , 𝜆 are the corresponding eigenvalues (in order)

Proof:
If 𝐴 has 𝑛 linearly independent eigenvectors 𝑣⃗, … , 𝑣⃗ for the eigen values 𝜆 , … , 𝜆

→ define 𝑃 = (𝑣⃗, … , 𝑣⃗): 𝑃 is invertible
𝐴𝑃 = (𝐴𝑣⃗, … , 𝐴𝑣⃗) = (𝜆 𝑣⃗, … , 𝜆 𝑣⃗)

𝑃𝐷 = (𝑣⃗, … , 𝑣⃗)
𝜆

⋱
𝜆

= (𝜆 𝑣⃗, … , 𝜆 𝑣⃗) 𝐷 =
𝜆 (0)

⋱
(0) 𝜆

𝐴𝑃 = 𝑃𝐷, 𝐴 = 𝑃𝐷𝑃

Ex.1
Diagonalize if possible

𝐴 =
2 6
0 −1

Eigenvalue: 2, −1

𝜆 = 2: (𝐴 − 2𝐼 | 0) =
0 6
0 −3

0
0

Take 𝑣⃗ =
1
0

𝜆 = −1: (𝐴 + 𝐼 | 0) =
3 6
0 0

0
0

Take 𝑣⃗ =
−2
1

Define: 𝑃 =
1 −2
0 1

,     𝐷 =
2 0
0 −1

Then 𝐴 = 𝑃𝐷𝑃

=
1 −2
0 1

2 0
0 −1

1 2
0 1

Ex.2
Diagonalize if possible

𝐵 =
3 1
0 3

Eigenvalue: 3

(𝐵 − 3𝐼 | 0) =
0 1
0 0

0
0

→ 1 free variable

dimNull(𝐵 − 3𝐼)= 1

𝐵 is not diagonizable
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Distinct Eigenvalues
Theorem
If 𝐴 is 𝑛 × 𝑛 and has 𝑛 disctinct eigenvalues, then 𝐴 is diagonalizable.

Why does this theorem hold?
5.1: eigenvectors for distinct eigenvalues are linearly independent.

Is it necessary for an 𝑛 × 𝑛 matrix to have 𝑛 distinct eigenvalues for it to be diagonalizable? NO!
0 0
0 0

is diagonizable

Non-Distinct Eigenvalues
Theorem. Suppose

𝐴 is 𝑛 × 𝑛•
𝐴 has distinct eigenvalues 𝜆 , … , 𝜆 , 𝑘 ≤ 𝑛•
𝑎 = algebraic multiplicity of 𝜆•
𝑑 = dimension of 𝜆 eigenspace ("geometric multiplicity")•

Then
𝑑 < 𝑎 for all 𝑖1.
𝐴 is diagonalizable ⟺ Σ𝑑 = 𝑛 ⟺ 𝑑 = 𝑎 for all 𝑑 𝑖2.
𝐴 is diagonalizable ⟺ the eigenvectors, for all eigenvalues, together form a basis for ℝ .3.

Ex.
EV     A     D

𝐴 =
2 6
0 −1

:  2
−1

1
1

1
1

𝐵 =
3 1
0 3

:  3 2 1

Ex.3
The eigenvalues of 𝐴 are 𝜆 = 3,1. If possible, construct 𝑃 and 𝐷 such that 𝐴𝑃 = 𝑃𝐷

𝐴 =
7 4 16
2 5 8

−2 −2 −5

𝜆 = 1: (𝐴 − 𝐼 | 0) =
6 4 16
2 4 8

−2 −2 −6

0
0
0

~
3 2 8
1 2 4
1 1 3

0
0
0

~
1 1 3
0 1 1
0 0 0

0
0
0

Null(𝐴 − 𝐼) = Span
−2
−1
1

𝜆 = 3: (𝐴 − 3𝐼 | 0) =
4 2 −2
2 2 8

−2 −2 −8

0
0
0

~
1 1 4
0 0 0
0 0 0

0
0
0

�⃗� ∈ Null(𝐴 − 3𝐼) if

�⃗� =

𝑥
𝑥
𝑥

=
−𝑥 −4𝑥
𝑥

𝑥
= 𝑥

−1
1
0

+ 𝑥
4
0
1

Now: 𝑃 =
−2 −1 −4
−1 1 0
1 1 1

,     𝐷 =
1 0 0
0 3 0
0 0 3

:     𝐴 = 𝑃𝐷𝑃

Additional Example
Note that

𝑥 ⃗ =
0 1
1 1

𝑥 ⃗,     𝑥⃗ =
1
1

,     𝑘 = 1,2,3, …

Generates a well-known sequence of numbers

Use a diagonalization to find a matrix equation that gives the 𝑛 number in this sequence

𝑥⃗ =
𝐹
𝐹

=
1
1

𝑥⃗ =
0 1
1 1

𝐹
𝐹

=
𝐹

𝐹 + 𝐹
=

𝐹
𝐹

=
1
2

𝑥⃗ =
2
3

𝑥⃗ =
3
3

𝑥⃗ =
5
8
…

→ 𝐹 =
1

√5

1 + √5

2
−

1 − √5

2

∴ 𝑥 ⃗ = 𝑃𝐷 𝑃 𝑥⃗



Notes:

Chapter 5.5: Complex Eigenvalues

Imaginary Numbers
Recall: When calculating roots of polynomials, we can encounter square
roots of negative numbers. For example:

𝑥 + 1 = 0
The roots of this equation are:

±√−1

We usually write √−1 as 𝑖 (for "imaginary").

Addition and Multiplication
The imaginary (or complex) numbers are denoted by ℂ, where

ℂ = {𝑎 + 𝑏𝑖|𝑎, 𝑏 in ℝ}
We can identify ℂ with ℝ : 𝑎 + 𝑏𝑖 ↔ (𝑎, 𝑏)

We can add and multiply complex numbers as follows:
(2 − 3𝑖) + (−1 + 𝑖) = 1 − 2𝑖
(2 − 3𝑖)(−1 + 𝑖) = −2 + 2𝑖 + 3𝑖 − 3𝑖 = 1 + 5𝑖

Complex Conjugate, Absolute Value, Polar Form
We can conjugate complex numbers: 𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖

The absolute value of complex number: |𝑎 + 𝑏𝑖| = √𝑎 + 𝑏

We can write complex numbers in polar form: 𝑎 + 𝑏𝑖 = 𝑟(cos(∅) + 𝑖 sin(∅))

Complex Conjugate Properties
If 𝑥 and 𝑦 are complex numbers, �⃗� ∈ ℂ , it can be shown that:

(𝑥 + 𝑦) = 𝑥 + 𝑦•
𝐴�⃗� = 𝐴�⃗�•
lm(𝑥𝑥) = 0•

𝐴 =
1 2
3 4

,    �⃗� =
𝑣
𝑣 ∈ ℂ

𝐴�⃗� =
𝑣 + 2𝑣

3𝑣 + 4𝑣
=

𝑣 + 2𝑣

3𝑣 + 4𝑣
= 𝐴

𝑣

𝑣

𝑥𝑥 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎 + 𝑏

Ex. True or false: if 𝑥 and 𝑦 are complex numbers, then
(𝑥𝑦) = 𝑥 𝑦

True: 𝑥𝑦 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 − 𝑏𝑐)𝑖
𝑥𝑦 = 𝑎𝑐 − 𝑏𝑑 − (𝑎𝑑 − 𝑏𝑐)𝑖
𝑥 𝑦 = (𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖) = 𝑎𝑐 − 𝑏𝑑 − (𝑎𝑑 + 𝑏𝑐)𝑖

Applications: 𝑥 = 𝑥 𝑥 = 𝑥 … 𝑥 = 𝑥

↳ 𝑃 real polynomial: 𝑃(𝑥) = 𝑃(𝑥)

Polar Form and the Complex Conjugate
Conjugation reflects points across the real axis

lm(𝑧) 𝑧 = 𝑥 + 𝑖𝑦

∅
Re(𝑧)

O
−∅

𝑧 = 𝑥 − 𝑖𝑦

Euler's Formula
Suppose 𝑧 has angle ∅ , and 𝑧 has angle ∅ .

lm(𝑧)
𝑧

𝑧 𝑧
∅

∅

O                      Re(𝑧)

The product 𝑧 𝑧 has angle ∅ + ∅ and modulus |𝑧||𝑤|. Easy to remember using Euler's formula.
𝑧 = |𝑧|𝑒 ∅
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The product  𝑧 𝑧 is:
𝑧 = 𝑧 𝑧 =|𝑧 |𝑒 ∅|𝑧 |𝑒 ∅ = |𝑧 ||𝑧 |𝑒 (∅ ∅ )

Complex Number and Polynomials
Theorem: Fundamental Theorem of Algebra
Every polynomial of degree 𝑛 has exactly 𝑛 complex roots, counting multiplicity.

Theorem
If 𝜆 ∈ ℂ is a root of a real polynomial 𝑝(𝑥), then the conjugate 𝜆 is also a root of 𝑝(𝑥).1.
If 𝜆 is an eigenvalue of real matrix 𝐴 with eigenvector �⃗�, then 𝜆 is an eigenvalue of 𝐴 with eigenvector �⃗�.2.

𝑝(𝜆) = 0a.
𝑝𝜆 = 0 = 0

𝐴�⃗� = 𝜆�⃗� = 𝐴�⃗� = 𝜆�⃗�b.

Ex.
Four of the eigenvalues of a 7 × 7 matrix are −2, 4 + 𝑖, −4 − 𝑖, and 𝑖.
What are the other eigenvalues?

Eigenvalues:
−2
4 + 𝑖 → 4 − 𝑖
−4 − 𝑖 → −4 + 𝑖
2 → −𝑖

Ex.3
The matrix that rotates vectors by ∅ = ⁄ radians about the origin, and then scales (or dilates) vectors by 𝑟 = √2, iI

𝐴 =
𝑟 0
0 𝑟

cos(∅) − sin(∅)

sin(∅) cos(∅)
=

1 −1
1 1

What are the eigenvalues of 𝐴? Express them in polar form.

𝐴 = 𝑟
cos(∅) − sin(∅)

sin(∅) cos(∅)
|𝐴 − 𝜆𝐼| = 𝜆 − 2𝜆 + 2

𝜆 , =
2 ± √4 − 8

2
= 1 ± 𝑖

1 + 𝑖

1                           1 + 𝑖 = √𝑧𝑒 ⁄

∅ 1 − 𝑖 = √𝑧𝑒 ⁄

𝑧 = |𝑧|𝑒 ∅

∅
1 − 𝑖

Ex.
The matrix in the previous example is a special case of this matrix:

𝐶 =
𝑎 −𝑏
𝑏 𝑎

Calculate the eigenvalues of 𝐶 and express them in polar form.
|𝐶 − 𝜆𝐼| = 𝜆 − 2𝑎𝜆 + 𝑎 + 𝑏

𝜆 , =
2 ± 4𝑎 − 4(𝑎 + 𝑏 )

2
= 𝑎 ± −𝑏 = 𝑎 ± 𝑖𝑏

𝜆 = 𝑎 + 𝑏 𝑒
±

𝐶 = 𝑎 + 𝑏

𝑎
√𝑎 + 𝑏

−𝑏
√𝑎 + 𝑏

𝑏
√𝑎 + 𝑏

𝑎
√𝑎 + 𝑏

= 𝑟
cos(∅) − sin(∅)

sin(∅) cos(∅)

Diagonalization
Let 𝐴 be a real 2 × 2 matrix with a complex eigenvalue 𝜆 = 𝑎 − 𝑏𝑖 (where 𝑏 ≠ 0) and associated eigenvector �⃗�. Then we 
may construct the diagonalization

𝐴 = 𝑃𝐶𝑃
where

𝑃 = (Re(�⃗�) Im(�⃗�)) and 𝐶 =
𝑎 −𝑏
𝑏 𝑎

Note that following.
𝐶 is referred to as a rotation dilation matrix, because it is the composition of a rotation by ∅ and dilation by 𝑟.•
The proof for why the columns of 𝑃 are always linearly independent is a bit long, it goes beyond the scope of this 
course.

•



Worksheet 5.3, Diagonalization
Worksheet Exercises

Recall from lecture: matrix 𝐴 is diagonalizable if it can be written as 𝐴 = 𝑃𝐷𝑃
𝑃 is a matrix whose columns are linearly independent eigenvector of 𝐴a.
𝐷 is a diagonal matrixb.
The elements on the main diagonal of 𝐷 are eigenvalues of 𝐴c.
𝐴 diagonal matrix is a matrix that in which nondiagonal entries are 0.d.
The geometric multiplicity of an eigenvalue is:

dimNull(𝐴 − 𝜆𝐼)→ how many linearly independent eigenvectors existi.
e.

A matrix can be diagonalized when the geometric multiplicities of all the eigenvalues:
Is equal to the algebraic multiplicity of eigenvaluesi.

f.

1.

If possible, construct 𝑃 and 𝐷 so that 𝐴 = 𝑃𝐷𝑃 . Eigenvalues of 𝐴 are given.

𝐴 =
3 1 1
1 3 1
1 1 3

, 𝜆 = 2,2,5

𝐴 − 2𝐼 =
1 1 1
1 1 1
1 1 1

Suppose �⃗� =

𝑥
𝑥
𝑥

is an eigenvector for 𝜆 = 2

𝐴�⃗� = 2�⃗�
(𝐴 − 2𝐼)�⃗� = 𝐴�⃗� − 2�⃗� = 0

1
1
1

1
1
1

1
1
1

𝑥
𝑥
𝑥

= 𝑥
1
1
1

+ 𝑥
1
1
1

+ 𝑥
1
1
1

=
0
0
0

∴ For 𝜆 = 2,

𝑣⃗ =
1
0

−1
, 𝑣⃗

0
1

−1

a.

2.

𝐴 − 5𝐼 =
−2 1 1
1 −2 1
1 1 −2

Suppose �⃗� =

𝑥
𝑥
𝑥

is an eigenvector for 𝜆 = 5

𝐴�⃗� = 5�⃗�
(𝐴 − 5𝐼)�⃗� = 𝐴�⃗� − 5�⃗� = 0

−2
1
1

1
−2
1

1
1

−2

𝑥
𝑥
𝑥

= 𝑥
−2
1
1

+ 𝑥
1

−2
1

+ 𝑥
1
1

−2
=

0
0
0

∴ For 𝜆 = 5,

𝑣⃗ =
1
1
1

𝐴 =
1 0 1
0 1 1

−1 −1 1

2 0 0
0 2 0
0 0 5

1 0 1
0 1 1

−1 −1 1

𝐴 =
1 3
4 2

, 𝜆 = −2,5

𝐴 + 2𝐼 =
3 3
4 5

Suppose �⃗� =
𝑥
𝑥 is an eigenvector for 𝜆 = −2

𝐴�⃗� = −2�⃗�
(𝐴 − 2𝐼)�⃗� = 𝐴�⃗� + 2�⃗� = 0

3
4

3
5

𝑥
𝑥 = 𝑥

3
4

+ 𝑥
3
5

=
0
0
0

∴ NOT DIAGONALIZABLE

b.

𝐴 =
3 2
0 3

c.

If possible, give an example of:
A singular 2 × 2 matrix in echelon form that can be diagonalized.a.
A singular 2 × 2 matrix in echelon form that cannot be diagonalized.b.
A invertible 2 × 2 matrix in echelon form that can be diagonalized.c.
A invertible 2 × 2 matrix in echelon form that cannot be diagonalized.d.

3.

Indicate whether the statements are true or false.
If 𝐴 is diagonalizable, then so is 𝐴 .
If 𝐴 is diagonalizable, then so is 𝐴.

4.

Written Explanation Exercise Given an example of an upper triangular 4 × 4 matrix 𝐴 such that 0 is its only eigenvalue and such that its 
eigenspace is 3-dimensional. Explain why the eigenspace has dimension 3.

5.

Worksheet 5.5, Complex Eigenvalues
Worksheet Exercises

Indicate whether the statements are true or false.
There exists a real 2 × 2 matrix with the eigenvalues 𝑖 and 2𝑖.

Falsei.
a.

Every real 3 × 3 matrix must have a real eigenvalue.
Truei.

b.

1.

𝐴 is a composition of a rotation and a scaling. Give the angle of rotation, ∅, and the scale factor, 𝑟

𝐴 = √3 −1

1 √3
= 𝑟

cos(∅) − sin(∅)

sin(∅) cos(∅)
=

√3
2 − 1

2

1
2

√3
2

a.

2.
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∅ = ⁄ , 𝑟 = 2b.

Let 𝐴 =
4 −1
2 6

. Find an invertible matrix 𝑃 and a rotation-dilation matrix 𝐶 such that 𝐴 = 𝑃𝐶𝑃

𝑃 𝐶𝑃 = 𝐴 =
4 −1
2 6

a.

Solve 𝜆
𝜆 = 5 ± 𝑖i.
Choose 𝜆 = 5 − 𝑖ii.

𝐶 =
Re(𝜆) Im(𝜆)

Im(𝜆) Re(𝜆)
=

5 1
−1 5

iii.

�⃗� =
1

−1 + 𝑖
iv.

𝑃 =
1 0

−1 1
v.

b.

3.

Matrix 𝐴 is a 2 × 2 matrix that satisfies the equality
𝐴 + 2𝐴 = −6𝐼a.

4.

𝐼 is the 2 × 2 identity matrix. Compute the eigenvalues of 𝐴.
Written Explanation Exercise Can a 7 × 7 have 2 real eigenvalues and 5 non-real eigenvalues? If 𝐴 is an 𝑛 × 𝑛 matrix and 𝑛 matrix and 𝑛
is odd, why does 𝐴 have a real eigenvalues?

5.



Ex.
If possible, construct matrices 𝑃 and 𝐶 such that 𝐴𝑃 = 𝑃𝐶

𝐴 =
1 −2
1 3

|𝐴 − 𝜆𝐼| = 𝜆 − 4𝜆 + 5, eigenvalues: 𝜆 =
±√

= 2 ± 𝑖

Take 2 − 𝑖, 𝑎 − 𝑏𝑖: 𝑎 = 2, 𝑏 = 1 𝐶∗ =
𝑎 −𝑏
𝑏 𝑎

�⃗� eigenvector for 𝜆: (𝐴 − 𝜆𝐼 | 0) =
−1 + 𝑖 −2

1 1 + 𝑖
0
0

First row: (−1 + 𝑖)𝑥 = 2𝑥
For example, take 𝑥 = 2: 𝑥 = −1 + 𝑖

�⃗� =
2

−1 + 𝑖
=

2
−1

+ 𝑖
0
1

For 𝑝 =
2 0

−1 1
and 𝐶 =

2 −1
1 2

Then, 𝐴 = 𝑃𝐶𝑃

Section 10.2: The Steady-State Vector and PageRank

Steady State Vectors
Recall the car rental problem from our Section 4.9 lecture.

Problem
A car rental company has 3 rental locations, 𝐴, 𝐵, and 𝐶.

Rented From

A B C

A .8 .1 .2

Returned To B .2 .6 .3

C .0 .3 .5

There are 10 cars at each location today, what happens to the distribution of cars after a long time?

Long Term Behavior
Can use the transition matrix, 𝑃, to find the distribution of cars after 1
week:

𝑥⃗ = 𝑃𝑥⃗
The distribution of cars after 2 weeks is:

𝑥⃗ = 𝑃𝑥⃗ = 𝑃𝑃𝑥⃗
The distribution of cars after 𝑛 weeks is:

𝑥 ⃗ = 𝑃 𝑥⃗

Long Term Behavior
To investigate the long-term behavior of a system that has a regular
transition matrix 𝑃, we could:

compute the steady-state vector, �⃗�, by solving �⃗� = 𝑃�⃗�.1.
compute 𝑃 𝑥⃗ for large 𝑛.2.
compute 𝑃 for large 𝑛, each column of the resulting matrix is the steady-state3.

Theorem 1
If 𝑃 is a regular m ×m transition matrix with m ≥ 2, then the following statements are all true.

There is a stochastic matrix Π such that
lim
→

𝑃 = Π
1.

Each column of Π is the same probability vector �⃗�.2.
For any initial probability vector 𝑥⃗,

lim
→

𝑃 𝑥⃗ = �⃗�
3.

𝑃 has a unique eigenvector, �⃗�, which has eigenvalue 𝜆 = 1.4.
The eigenvalues of 𝑃 satisfy |𝜆| ≤ 1.5.

We will apply this theorem when solving PageRank problems.
𝑣⃗, … , 𝑣⃗ basis of eigenvectors

for 𝜆 , … , 𝜆
𝑥⃗ = 𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣⃗

𝑃 𝑥⃗ = 𝑐 𝜆 𝑣⃗+ ⋯ + 𝑐 𝜆 𝑣⃗

For 𝑗 = 2

Thus: 𝜆 ⟶
→

0

Ex. 1
A set of web pages link to each other according to this diagram.

A                             B
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C                                 D                             E

Page 𝐴 has links to pages 𝐵 and 𝐷.
Page 𝐵 has links to pages 𝐴, 𝐶 and 𝐷.
We make two assumptions:

A user on a page in this web is equally likely to go to any of the pages that their page links to.a)
If a user is on a page that does not link to other pages, the user stays at that page.b)

Use these assumptions to construct a Markov chain that represents how users navigate the above web.

Solution:

𝑃 =

⎝

⎜
⎜
⎜
⎛

0 1
3

1
2 0

1
2 0 0

1
2 0 0

0 1
3

1
2

1
3

0 0

0 0 0
0 0 0
0 1 1 ⎠

⎟
⎟
⎟
⎞

Transition Matrix, Importance, and PageRank
The square matrix we constructed in the previous example is a transition matrix. It describes how users transition 
between pages in the web.

•

The steady-state vector, �⃗�, for the Markov-chain, can characterize the long-term behavior of users in a given web.•
If �⃗� is unique, the importance of a page in a web is given by its corresponding entry in �⃗�.•
The PageRank is the ranking assigned to each page based on its importance. The highest ranked page has 
PageRank 1, the second PageRank 2, and so on.

•

Two pages with same importance receive the same PageRank (some other method would be needed to resolve 
ties)

•

Is the transition matrix in Example 1 a regular matrix? NO

If column k is just points to row k, then the matrix is non-regular

𝑥⃗ =

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

→ 𝑥⃗ = 𝑃

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

=

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

⇒ 𝑥 ⃗ = 𝑃

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

=

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

= 𝑒⃗

Adjustment 1
If a user reaches a page that does not link to other pages, the user will choose any page in the web, with equal 
probability, and move to that page.

Let’s denote this modified transition matrix as 𝑃∗. Our transition matrix in Example 1 becomes:

𝑃 =

⎝

⎜
⎜
⎜
⎛

0 1
3

1
2 0

1
2 0 0

1
2 0 0

0 1
3

1
2

1
3

0 0

0 0 0
0 0 0
0 1 1 ⎠

⎟
⎟
⎟
⎞

= 𝑃∗ =

⎝

⎜
⎜
⎜
⎜
⎛

0 1
3

1
2 0

1
2 0 1

5
1

2 0 1
5

0 1
3

1
2

1
3

0 0

0 0 1
5

0 0 1
5

0 1 1
5 ⎠

⎟
⎟
⎟
⎟
⎞

Adjustment 2
A user at any page will navigate to any page among those that their page links to with equal probability 𝑝, and to any 
page in the web with equal probability 1 − 𝑝. The transition matrix becomes

𝐺 = 𝑃∗ + (1 − 𝑝)𝑘

All the elements of the 𝑛 × 𝑛 matrix 𝑘 are equal to ⁄ .

𝑝 is referred to as the damping factor, Google is said to use 𝑝 = 0.85.
With adjustments 1 and 2, our the Google matrix is:

𝐺⏞ = 𝑃∗ + (1 − 𝑝)𝑘

⋯
⋮ ⋱ ⋮

⋯

( )

𝐺 =

⎝

⎜
⎛

0.030 0.313
0.425 0.030

0.425 0.030 0.200
0.425 0.030 0.200

0.030 0.313
0.425 0.313
0.030 0.030

0.030 0.030 0.200
0.030 0.030 0.200
0.030 0.880 0.200⎠

⎟
⎞

Computing Page Rank
Because G is stochastic, for any initial probability vector 𝑥⃗,•
lim
→

𝐺 𝑥⃗ − �⃗�•

We can obtain steady-state evaluating 𝐺 𝑥⃗ for large 𝑛, by solving 𝐺�⃗� = �⃗�, or by evaluating 𝑥 ⃗ = 𝐺𝑥 ⃗ for large 
𝑛.

•

Elements of the steady-state vector give the importance of each page in the web, which can be used to determine 
PageRank.

•

Largest element in steady-state vector corresponds to page with PageRank 1, second largest with PageRank 2, and •



so on.
On an exam,

problems that require a calculator will not be on your exam•
you may construct your G matrix using factions instead of decimal expansions•



U                                                V

W

𝐺 = 𝑃∗ + (1 − 𝑝) 𝑘⏟

𝑃∗ =

⎣
⎢
⎢
⎢
⎡ 0 0 1

3
1

2 0 1
3

1
2 1 1

3⎦
⎥
⎥
⎥
⎤

𝑘 =

⎣
⎢
⎢
⎢
⎡
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3⎦
⎥
⎥
⎥
⎤

Solve (𝐺 − 𝐼 | 0)

Find a solution 𝑣 to whose entries add to 1, 𝑣 is a steady state

Say 𝑣 is the steady.

E.G. 𝑣 =
.2
.5
.3

⇒ 𝑣 > 𝑤 > 𝑢

(not the actual SS)

Worksheet 10.2, The Steady-State Vector and Page Rank
Worksheet Exercises

A set of web pages link to each other according to this diagram.1.

V                              W                                Y

X                                                                 Z

Create the transition matrix, 𝑃, for this web.

𝑃 =

⎝

⎜
⎜
⎜
⎜
⎛

0 1
3

1
2

1 0 1
2

0 1
5

0 1
5

0 1
3 0

0 1
3 0

0 0 0

0 1
5

0 1
5

1 1
5⎠

⎟
⎟
⎟
⎟
⎞

i.

a.

Construct the Google Matrix for this web, 𝐺. Use damping factor 𝑝 = 0.85.

𝐺 = 0.85𝑃 + 0.95

1
5 ⋯ 1

5
⋮ ⋱ ⋮

1
5 ⋯ 1

5

, �⃗� =

⎝

⎜
⎛

0.211
0.109
0.148
0.148
0.182⎠

⎟
⎞

i.

b.

During an exam, to determine the page ranks of each page in the web a you would be given the steady-state 
vector 𝐺. Because you are not taking an exam right now, compute the steady-state vector and page ranks of 
each page on the web. You can use software.

c.

Hint: For a web with only two pages that are linked to each other, we can compute the steady state using MATLAB 
or Octave using these commands.

Pstar = ⁄ [0 1; 1 0]

K = ⁄ ∗ ones(2)

G = ∗ 𝑃star + (1 − 𝑝) ∗ 𝐾

𝐺↑(100)
There are many free online Octave compilers.
Suppose 𝑝 and 𝑞 are real numbers on the open interval (0,1), and

𝐴 =
𝑝 1 − 𝑞

1 − 𝑝 𝑞
Is 𝐴 stochastic? Is 𝐴 regular?

𝑝 = 0.2, 𝑞 = 0.7 (random #s to solution)i.
0.2 0.3
0.8 0.7

→ all positive entries; hence, 𝐴 is stochastic and regularii.

a.

2.

Studio 17
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By inspection, what is one eigenvalue of 𝐴?
Since 𝐴 is stochastic and regular that means it has a unique steady-state which implies 𝜆 = 1i.

b.

Compute the steady-state vector of 𝐴.

(𝐴 − 𝐼 | 0) ⇒
𝑝 − 1 1 − 𝑞
1 − 𝑝 𝑞 − 1

0
0

~ 1
1 − 𝑞

𝑝 − 1
0 0

0
0

⇒ 𝑡 −
1 − 𝑞

𝑝 − 1
1

~

(−1 + 𝑞)
(−2 + 𝑞 + 𝑝)

(𝑝 − 1)
(−2 + 𝑞 + 𝑝)

i.

c.

Compute the limit lim → 𝐴

→ [�⃗� �⃗�] ⇒

(−1 + 𝑞)
(𝑞 + 𝑝 − 2)

(−1 + 𝑞)
(𝑞 + 𝑝 − 2)

(𝑝 − 1)
(𝑞 + 𝑝 − 2)

(𝑝 − 1)
(𝑞 + 𝑝 − 2)

i.

d.

Consider the dynamical system 𝑥 ⃗ = 𝐴𝑥 ⃗, 𝑘 = 1,2,3, … , where

𝐴 =
.5 .25 .25

.25 .5 .25

.25 .25 .5
, 𝑥⃗ =

1
0
0

3.

The eigenvalues of 𝐴 are 1 and ⁄ . Analyze the long-term behavior of the system. In other words, determine what 
𝑥 ⃗ tends to as 𝑘 → ∞

𝑥 = 𝐴 𝑥
𝐴 = 𝑃𝐷𝑃

𝑃 =
1 1 1
1 −2 1
1 1 −2

, 𝐷 =

1
1

4
1

4

𝑃 = 1
3

1 1 1
1 −2 1
1 1 −2

𝑥 = 𝐴 𝑥 =𝑥 = 𝐴 𝑥 𝑥 = 𝑃𝐷 𝑃 𝑥 → 𝑃
1 0 0
0 0 0
0 0 0

𝑃 𝑥 =
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

1
0
0

=

⎣
⎢
⎢
⎢
⎡
1

3
1

3
1

3⎦
⎥
⎥
⎥
⎤



Notes:
Construct the Google Matrix for the web below. Which page do you think will have the highest PageRank? How 
would your result depend on the damping factor p? Use software to explore the questions.

A                                    B

C                                    D

Compute: 𝑃

𝐺 = 0.85𝑃∗ + 0.15

⎝

⎜
⎜
⎛

1
4

1
4

1
4

1
4

⋯

⎠

⎟
⎟
⎞

1.

Use a computer to find �⃗� for 𝐺

𝑃∗ =

⎝

⎜
⎜
⎛

0 0
0 0

0 1
4

0 1
4

1 1
0 0

0 1
4

1 1
4⎠

⎟
⎟
⎞

2.

Columns of 𝐺

�⃗� ≅

0.13
0.13
0.34
0.41

, �⃗� ≅

200
200
540
654

2.

PageRank
𝐷1.
𝐶1)
𝐴 and 𝐵2)

Section 6.1: Inner Product, Length, and Orthogonality
Remark
(𝐴𝐵) , = Row⃗(𝐴, 𝑖). Col⃗(𝐵, 𝑗)

The Dot Product
The dot product between two vectors, 𝑢 and �⃗� in ℝ , is defined as

𝑢 �⃗� = 𝑢 �⃗� = [𝑢 𝑢 ⋯ 𝑢 ]

𝑣
𝑣
⋮

𝑣

= 𝑢 𝑣 + 𝑢 𝑣 + ⋯ + 𝑢 𝑣 .

Ex.1: For what values of 𝑘 is 𝑢 �⃗� = 0?

𝑢 =

−1
3
𝑘
2

, �⃗� =

4
2
1

−3

𝑢 �⃗� = −4 + 6 + 𝑘 − 6 = 𝑘 − 4
𝑢 �⃗� = 0 ⟺ 𝑘 = 4

Properties of the Dot Product
The dot product is a special form of matrix multiplication, so it inherits linear properties.
Theorem (Basic Identities of Dot Product)
Let 𝑢, �⃗�, 𝑤 be three vectors in ℝ , and 𝑐 ∈ ℝ.

(Symmetry) 𝑢 𝑤 = 𝑤 𝑢1)
(Linear in each vector) (�⃗� + 𝑤) 𝑢 = �⃗� 𝑢 + 𝑤 𝑢2)
(Scalars) (𝑐𝑢) 𝑤 = 𝑐(𝑢 𝑤)3)
(Positivity) 𝑢 𝑢 ≥ 0, and the dot product equals 0 iff 𝑢 = 0⃗

𝑢 𝑢 = 𝑢 + 𝑢 + ⋯ + 𝑢
4)

The Length of a Vector
Definition
The length of a vector 𝑢 ∈ ℝ iI

‖𝑢‖= 𝑢 𝑢 = 𝑢 + 𝑢 + ⋯ + 𝑢

Ex. The length of 
1
3
2

is √1 + 3 + 2 = √14

Ex.
Let 𝑢, �⃗� be two vectors in ℝ with ‖𝑢‖= 5, ‖�⃗�‖= √3, and 𝑢 �⃗� = −1.
Compute the value of ‖𝑢 + �⃗�‖.
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‖𝑢 + �⃗�‖= (𝑢 + �⃗�) (𝑢 + �⃗�)
= 𝑢 𝑢 + 𝑢 �⃗� + �⃗� �⃗�

= ‖𝑢‖+ 2𝑢 �⃗� + ‖�⃗�‖
= 25 − 2 + 3
= 26

→ ‖𝑢 + �⃗�‖= √26

‖𝑐𝑢‖= 𝑐 𝑢 + ⋯ + 𝑐 𝑢 = 𝑐 𝑢 + ⋯ + 𝑢 = |𝑐|‖𝑢‖

Length of Vectors and Unit Vectors
Note: for any vector �⃗� and scalar 𝑐, the length of 𝑐�⃗� is

‖𝑐�⃗�‖= |𝑐|‖�⃗�‖
Definition
If �⃗� ∈ ℝ has length one, we say it is a unit vector
For example, each of the following vectors are until vectors.

𝑒⃗ =
1
0
, �⃗� =

1

√5

1
2
, �⃗� =

1

√3

1
0
1
1

Distance in ℝ𝒏

Definition
For 𝑢, �⃗� ∈ ℝ , the distance between 𝑢 and �⃗� is given by the formula

‖𝑢 − �⃗�‖

Example: Compute the distance from 𝑢 =
7
1
and �⃗� =

3
2

Here: 𝑢 − �⃗� =
4

−1
‖𝑢 − �⃗�‖= √16 + 1 = √17

Orthogonality
Definition (Orthogonal Vectors)
Two vectors 𝑢 and 𝑤 ar e orthogonal if 𝑢 𝑤 = 0. This is equivalent to:

‖𝑢 − 𝑤‖= ‖𝑢‖+ ‖𝑤‖
Note: The zero vector in ℝ is orthogonal to every vector in ℝ . But we usually only mean non-zero vectors.

Ex.2 

Sketch the subspace spanned by the set of all vectors �⃗� that are orthogonal to �⃗� =
3
2
.

𝑥
�⃗�

𝑥

𝑢 =
𝑥
𝑥

𝑢 �⃗� = 0 ⟺ 3𝑥 + 2𝑥 = 0
↕
�⃗� + 𝑢 = 0 ⟺ 𝑢 ∈ Null(�⃗�)

Orthogonal Compliments
Definitions
Let 𝑊 be a subspace of ℝ . Vector 𝑧 ∈ ℝ is orthogonal to 𝑊 if 𝑧 is orthogonal to every vector in 𝑊.
He set of all vectors orthogonal to 𝑊 is a subspace, the orthogonal compliment of 𝑊, or 𝑊 or '𝑊 prep.'

𝑊 = {𝑧 ∈ ℝ ∶ 𝑧 𝑤 = 0 ∀ 𝑤 ∈ 𝑊}

Ex.3

Example: suppose 𝐴 =
1 3
2 6

.

Col 𝐴 is the span of 𝑎⃗ =
1
2

•

Col 𝐴 is the span of 𝑧 =
2

−1
•

Sketch Null 𝐴 and Null 𝐴 on the grid below.
𝑥 Null 𝐴

𝑥

Null 𝐴

Null (𝐴) = Span
3

−1

Null (𝐴) = Span
1
3

Ex.4

Line 𝐿 is a subspace of ℝ spanned by �⃗� =
2

−1
2

. Then the space 𝐿 is a place. Construct an equation of the 



plane 𝐿 .

𝑢 =

𝑥
𝑥
𝑥

𝑢 �⃗� = 0 ⟺ 𝑥 − 𝑥 + 2𝑥 = 0

Row 𝑨
Definition
Row 𝐴 is a the space spanned by the rows of matrix 𝐴.
We can show that

dimRow(𝐴)= dimCol(𝐴)•
A basis for Row 𝐴 is a pivot rows of 𝐴•

Note that Row(𝐴) = Col(𝐴 ), but in general Row 𝐴 and Col 𝐴 are not related to each other

Ex.5
Describe the Null (𝐴) is terms of an orthogonal subspace.

A vector �⃗� is in Null 𝐴 if and only if
𝐴�⃗� = 0⃗1.
This means that �⃗� is orthogonal to each row of 𝐴2.
Row 𝐴 is orthogonal to Null 𝐴3.
The dimension of Row 𝐴 plus the dimension of Null 𝐴 equals 𝑛 (# columns)4.

Rank Theorem
dimCol(𝐴)

( )

+ dimNull(𝐴)= 𝑛

Theorem (The Four Subspaces)
For any 𝐴 ∈ ℝ × , the orthogonal complement of Row 𝐴 is Null 𝐴, and the orthogonal complement of Col 𝐴 is 
Null 𝐴
We know: Row (𝐴) ⊥ Null (𝐴) in ℝ
Apply to 𝐴 : Row (𝐴 ) ⊥ Null (𝐴 ) in ℝ



Notes:
Angles
Theorem
�⃗� �⃗� = |�⃗�| �⃗� cos 𝜃. Thus, if �⃗� �⃗� = 0, then:

�⃗� and/or �⃗� are 0 vectors, or �⃗� and �⃗� are orthogonal vectors.•
For example, consider the vectors below.

𝑐 �⃗�

∅
𝜃

�⃗�

"easy case": �⃗� is in the direction of the x1-axis
𝑎 =�⃗�cos 𝜃 ,�⃗�sin 𝜃

𝑏 = �⃗� , 0

Thus: �⃗� �⃗� = ‖�⃗�‖,�⃗�cos 𝜃 + 0

Section 6.2: Orthogonal Sets

Orthogonal Vector Sets
Definition
A set of vectors 𝑢⃗, … , 𝑢 ⃗ are an orthogonal set of vectors if for each 𝑗 ≠ 𝑘, 𝑢⃗ ⊥ 𝑢 ⃗.

Ex: Fill in the missing entries to make {𝑢⃗, 𝑢⃗, 𝑢⃗} and orthogonal set of vectors.

𝑢⃗ =
4
0
1

, 𝑢⃗ =

−2
0
8

, 𝑢⃗ =

0
∗

0

𝑢⃗ =
−2
0
𝑥

→ 𝑢⃗ 𝑢⃗ = −8 + 𝑥

𝑢⃗ =
0
𝑥
𝑧

→
𝑢⃗ 𝑢⃗ = 2

𝑢⃗ 𝑢⃗ = 8𝑧

→ 𝑦 is free.

Linear Independence
Let 𝑢⃗, … , 𝑢 ⃗ be an orthogonal set of vectors. Then, for scalars 𝑐 , … 𝑐 .

𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗ = 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗ .
In particular, if all the vectors 𝑢⃗ are non-zero, the set of vectors 𝑢⃗, … , 𝑢 ⃗ are linearly independent.

𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗ = 𝑐 𝑢⃗ 𝑐 𝑢⃗

But 𝑢⃗ 𝑢⃗ =
‖𝑢⃗‖ 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

→ 𝑐 𝑢⃗ = 𝑐 ‖𝑢⃗‖+ ⋯ + 𝑐 ‖𝑢⃗‖

If none of the vector 𝑢⃗ is 0⃗:
Assume: 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗ = 0⃗

We have: 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗ = 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗

→ 𝑐 = 𝑐 = ⋯ = 𝑐 = 0

→ 𝑢⃗, … , 𝑢 ⃗ are linearly independent

Orthogonal Bases
Basis 𝑢⃗, … , 𝑢 ⃗ of 𝑊
𝑤 ∈ 𝑊: 𝑤 = 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗

Then 𝑢⃗, … , 𝑢 ⃗

𝑐
⋮

𝑐
= 𝑤

Theorem (Expansion in Orthogonal Basis)
Let 𝑢⃗, … , 𝑢 ⃗ be an orthogonal basis for a subspace 𝑊 of ℝ . Then, for any vector 𝑤 ∈ 𝑊.

𝑤 = 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗.

Above, the scalars are 𝑐 =
⃗ ⃗

⃗ ⃗
.

For example, any vector 𝑤 ∈ ℝ can be written as a linear combination of {𝑒⃗, 𝑒⃗, 𝑒⃗}, or some orthogonal basis 
{𝑢⃗, 𝑢⃗, 𝑢⃗}.

𝑤 = 𝑐 𝑢⃗ + ⋯ + 𝑐 𝑢 ⃗

1 ≤ 𝑞 ≤ 𝑝: 𝑤 𝑢 ⃗ = 𝑐 𝑢⃗𝑢 ⃗ + ⋯ + 𝑐 𝑢 ⃗𝑢 ⃗ = 𝑐 𝑢 ⃗ 𝑢 ⃗ =
⃗ ⃗

⃗ ⃗

Ex.
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�⃗� =
1
1
1

, 𝑢 =
1

−2
1

, �⃗� =
−1
0
1

, 𝑠 =
3

−4
1

Let 𝑊 be the subspace of ℝ that is orthogonal to �⃗�.
Check that an orthogonal basis for 𝑊 is given by 𝑢 and �⃗�a)
𝑢 �⃗� = 1 − 2 + 1 = 0: 𝑢 ∈ 𝑊

�⃗� �⃗� = −1 + 0 + 1 = 0: �⃗� ∈ 𝑊
𝑢 �⃗� = −1 + 0 + 1 = 0: 𝑢, �⃗� linearly independent

→ {𝑢, �⃗�} isan orthogonal basis of 𝑊.
Compute the expansion 𝑠 in basis 𝑊.b)

𝑠 =
3

−4
1

𝑠 �⃗� = 3 − 4 + 1 = 0: 𝑠 ∈ 𝑊
→ 𝑠 = 𝑐 𝑢 + 𝑐 �⃗�

𝑐 =
𝑠 𝑢

𝑢 𝑢
=

3 + 8 + 1

1 + 4 + 1
=

12

6
= 2

𝑐 =
𝑠 �⃗�

�⃗� �⃗�
=

−3 + 1

1 + 1
=

−2

2
= −1

→ 𝑠 = 2𝑢 − �⃗�

Projections
Let 𝑢 be a non-zero vector, and let �⃗� be some other vector. The orthogonal prokection of �⃗� onto the direction of 𝑢 is the 
vector in the span of 𝑢 that is closest to �⃗�.

proj ⃗�⃗� =
�⃗� 𝑢

𝑢 𝑢
𝑢

The vector 𝑤 = �⃗� − proj ⃗�⃗� is orthogonal to 𝑢, so that
�⃗� = proj ⃗�⃗� + 𝑤

‖�⃗�‖= ‖proj ⃗�⃗�‖+ ‖𝑤‖
�⃗�

𝑤

proj ⃗�⃗� 𝑢 Span{𝑢}

proj ⃗�⃗� = Span{𝑢}

→ proj ⃗�⃗� = 𝑘𝑢, 𝑘 ∈ ℝ
𝑢 �⃗� = 𝑢 (proj ⃗�⃗� + 𝑤)

= 𝑘𝑢 𝑢 + 𝑢 𝑤

→
𝑢 �⃗�

𝑢 𝑢

Ex.

Let 𝐿 be spanned by 𝑢 =

1
1
1
1

Calculate the projection of �⃗� = (−3,5,6, −4) onto line 𝐿.1.

proj ⃗�⃗� =
�⃗� 𝑢

𝑢 𝑢
𝑢 =

−3 + 5 + 6 − 4

1 + 1 + 1
𝑢 = 𝑢

How close is �⃗� to the line 𝐿?2.

‖𝑤‖‖�⃗� − proj ⃗�⃗�‖= ‖�⃗� − 𝑢‖=

−4
4
5

−5

= √16 + 16 + 25 + 25 = √82

Definition
Definition (Orthonormal Basis)
An orthonormal basis for a subspace 𝑊 is an orthogonal basis 𝑢⃗, … , 𝑢 ⃗ in which every vector 𝑢 ⃗ has unit length. In this 
case, for each 𝑤 ∈ 𝑊.

𝑤 = (𝑤 𝑢⃗)𝑢⃗ + ⋯ +𝑤 𝑢�⃗� ⃗

‖𝑤‖= (𝑤 𝑢⃗) + ⋯ +𝑤 𝑢 ⃗

𝑐⃗ =
𝑤 𝑢 ⃗

𝑢 ⃗ 𝑢 ⃗
= 𝑤 𝑢 ⃗

Orthonormal (orthogonal + normal)



Def. The dot product of 𝑢, �⃗� is 𝑢 �⃗� = 𝑢 𝑣 + ⋯ + 𝑢 𝑣

Ex. 
1
2
1

−3
1
0

= 1(−3) + 2(1) + 1(0)

Def. 𝑢 is orthogonal to �⃗� if 𝑢 �⃗� = 0

Def. The length 𝑢 is ‖𝑢‖= √𝑢 𝑢
Note: 𝑢 𝑢 = 𝑢 + ⋯ + 𝑢

Def. {𝑢 , … , 𝑢 } is orthogonal iI
𝑢 𝑢 = 0 for all 𝑖 ≠ 𝑗

‖𝑢 ‖= 1 for all 𝑖

Ex. 1
0

,
0
1

orthonormal

Prop. The projection of �⃗� onto 𝑢 is proj ⃗�⃗� =
⃗ ⃗

⃗ ⃗
𝑢

The closest vector to �⃗� in Span{𝑢} is proj ⃗�⃗�

Worksheet 6.1, Inner Product, Length, and Orthogonality
Worksheet Exercises

Fill in the blanks.

The distance between the vector 𝑢 =
2
3
and the line spanned by 𝑤 =

1
0
is proj ⃗𝑢 =

⃗ ⃗

⃗ ⃗
𝑤 =

1
0

=
2
0
. 2

3
−

2
0

=
0
3
. 0

3
=

(0) + (3) = 3

a.

If 𝑊 is the plane spanned by the vectors 𝑢 =
1
1
1

and �⃗� =
1
0

−1
, a basis of 𝑊 is given by 𝑤 =

−1
2

−1
.b.

𝑤 = Col
1 1 1
1 0 −1

, 𝑤 = Null
1 1 1
1 0 −1

If 𝑉 = {�⃗� ∈ ℝ |𝑥 + 𝑥 = 𝑥 }, then dim𝑉 = 2, and dim 𝑉 = 1.c.
𝑉 = Null[1 1 −1]
⇒ dim(𝑉) = 2
⇒ dim(𝑉 ) = dim(Row[1 1 −1]) = 1
dim(𝑉) + dim(𝑉 ) = 𝑛

1.

𝑊 is the set of all vectors of the form 
𝑥
𝑦

𝑥 + 𝑦
. Which of the vectors are in 𝑊 ?

𝑢 =
8

−5
8

,    �⃗� =
1
1

−1
,    𝑤 =

3
3

−3

2.

True or False
If �⃗� ∈ Null(𝐴), then �⃗� is orthogonal to the rows of matrix 𝐴.

Truei.
a.

If 𝑢 and �⃗� are non-zero orthogonal vectors, then they are linearly independent.
Truei.

b.

3.

Worksheet 6.2, Orthogonal Sets
Worksheet Exercises

Indicate whether the statements are true or false
If the columns of an 𝑛 × 𝑛 matrix 𝐴 are orthonormal, then the linear mapping �⃗� → 𝐴�⃗� preserves lengths.

Truei.
a.

If 𝑃 is a stochastic matrix, then the columns of 𝑃 have unit length.
Falsei.

b.

1.

Write �⃗� as the sum of a vector parallel to 𝑢 and a vector perpendicular to 𝑢.

�⃗� =
−1
−5
10

,   𝑢 =
5

−2
1

2.

Find the coordinates for �⃗� in the subspace spanned by the orthogonal vectors 𝑢⃗ and 𝑢⃗.

�⃗� =
0

−5
−3

,   𝑢⃗ =
1

−2
2

,   𝑢⃗ =
6

−7
−10

proj ⃗�⃗� =
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ =

4

9
𝑢

proj ⃗�⃗� =
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ =

65

185
𝑢

Coordinates: ,

3.

Give examples of the following.

A matrix, 𝐴, in RREF, such that dim Row(𝐴)= 1 and dim Col(𝐴)= 2.a.

dim Row(𝐴)= 1 ⇒ 𝐴 has 1 free variable

dim Col(𝐴)= 2 ⇒ 𝐴 has 2 free variables

𝐴 =
1 0
0 0
0 0

Two linearly independent vectors ℝ , 𝑢 and �⃗�, such that 𝑢 �⃗� = �⃗� �⃗� = 0, where �⃗� =
1
1
1

b.

𝑢 =
−1
1
0

,   �⃗� =
1
0

−1
1

4.
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A 3 × 3 matrix in RREF, 𝐴, such that Null(𝐴) is spanned by 
1
0

−2
.c.

𝐴 =
1 0 −2
0 0 0
0 0 0

A non-zero vector, 𝑤, whose projection Col(𝐴) is 𝑤, where 𝐴 =
1 0
0 0
0 1

.d.

𝑤 =
⬚

⬚

⬚



Notes:
Example
The subspace 𝑊 is a subspace of ℝ perpendicular to 𝑥 = (1,1,1). Calculate the missing coefficients in the orthonormal 
basis for 𝑊.

𝑢 =
1

√2

1
0

−1
𝑣 =

1

√6

1
−2
1

�⃗� =

𝑥
𝑥
𝑥

�⃗� 𝑢 = 0 ⟺ 𝑥 = 𝑥

�⃗� �⃗� = 0 ⟺ 𝑥 + 𝑥 + 𝑥 = 0

Orthogonal Matrices
An orthogonal matrix is a square matrix whose columns are orthonormal
Theorem

An 𝑚 × 𝑛 matrix 𝑈 has orthonormal columns if and only if 𝑈 𝑈 = 𝐼 .
Can 𝑈 have orthonormal columns if 𝑛 > 𝑚? NO (needs to be linearly independent)

Proof:
𝑈 matrix with columns 𝑢⃗, … , 𝑢 ⃗

𝑈 𝑈 =

⎝

⎛

𝑢⃗ 𝑢⃗ 𝑢⃗ 𝑢⃗

𝑢⃗ 𝑢⃗ 𝑢⃗ 𝑢⃗

⋯ 𝑢⃗ 𝑢 ⃗

⋯ 𝑢⃗ 𝑢 ⃗
⋱ ⋮

𝑢 ⃗ 𝑢 ⃗⎠

⎞

𝑈 𝑈 = 𝐼 ⟺
𝑢⃗ 𝑢⃗ = 1 for 1 ≤ 𝑖 ≤ 𝑛

𝑢⃗ 𝑢 ⃗ = 0 for i ≠ 𝑘

→ If 𝑈 is square 𝑈 = 𝑈

Theorem
Assume 𝑚 × 𝑛 matrix 𝑈 has orthonormal columns. Then,

(Preserves length) ‖𝑈�⃗�‖= �⃗�1.
(Preserves angle) (𝑈�⃗�) (𝑈�⃗�) = �⃗� �⃗�2.
(Preserves orthogonality) 𝑈�⃗� 𝑈�⃗� = 0 ⟺ �⃗� �⃗� = 03.

Proof:
(𝑈�⃗�) (𝑈�⃗�) = (𝑈�⃗�) (𝑈�⃗�) = �⃗� 𝑈 𝑈 �⃗� = �⃗� �⃗� = �⃗� �⃗�2.

From 2 we have,
‖𝑈�⃗�‖= 𝑈�⃗� 𝑈�⃗� = �⃗� �⃗� = ‖�⃗�‖

Example
Compute the length of the vector below.

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
2

2
√14

1
2

1
√14

1
2

−3
√14

1
2 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

√2
−3

⎝

⎜
⎛

⁄

⁄

⁄

⁄
⎠

⎟
⎞

and 

⎝

⎜
⎛

√

√

√

0 ⎠

⎟
⎞

are orthonormal

→

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
2

2
√14

1
2

1
√14

1
2

−3
√14

1
2 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

√2
−3

= √2
−3

= √11

Section 6.3: Orthogonal Projections

Ex.1
Let 𝑢⃗, … , 𝑢⃗ be an orthonormal basis for ℝ . Let 𝑊 = Span(𝑢⃗, 𝑢⃗). For a vector �⃗� ∈ ℝ , write �⃗� = 𝑦 + 𝑤 , where 𝑦 ∈

𝑊and 𝑤 ∈ 𝑊 .

�⃗� ∈ ℝ and {𝑢⃗, … , 𝑢⃗} basis of ℝ
�⃗� = 𝑐 𝑢⃗ + 𝑐 𝑢⃗ + 𝑐 𝑢⃗ + 𝑐 𝑢⃗ + 𝑐 𝑢⃗

𝑐 = �⃗� 𝑢 ⃗ for 1 ≤ 𝑞 ≤ 5

�⃗� = 𝑐 𝑢⃗ + 𝑐 𝑢⃗
∈

+ 𝑐 𝑢⃗ + 𝑐 𝑢⃗ + 𝑐 𝑢⃗

∈

�⃗� = 𝑦 + 𝑤
𝑦 = 𝑐 𝑢⃗ + 𝑐 𝑢⃗ ∈ 𝑊
𝑤 = 𝑐 𝑢⃗ + 𝑐 𝑢⃗ + 𝑐 𝑢⃗ ∈ 𝑤

Remark:
If �⃗� ∈ 𝑊: �⃗� = 𝑦, 𝑤 = 0⃗
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If �⃗� ∈ 𝑤 : 𝑦 = 0⃗, �⃗� = 𝑤

Orthogonal Decomposition Theorem
Theorem
Let 𝑊 be a subspace of ℝ . Then, each vector �⃗� ∈ ℝ has the unique decomposition

�⃗� = 𝑦 + 𝑤 ,	𝑦 ∈ 𝑊,	𝑤 ∈ 𝑊 .
And, if 𝑢⃗, … , 𝑢 ⃗ is any orthogonal basis for 𝑊.

𝑦 =
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ + ⋯ +

�⃗� 𝑢 ⃗

𝑢 ⃗ 𝑢 ⃗
𝑢 ⃗

We say that 𝑦 is the orthogonal projection of �⃗� onto 𝑊.

Explanation
We can write

𝑦 =
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ ∈ 𝑊 = Span𝑢⃗, … , 𝑢 ⃗ 𝑢 ⃗ 𝑢⃗ = 0 ⟺ 𝑖 ≠ 𝑞

Then, 𝑤 = �⃗� − 𝑦 because

𝑤 𝑢 ⃗ (�⃗� − 𝑦) = 𝑢 ⃗ �⃗� − 𝑦
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗

→ 𝑤 is orthogonal to 𝑢⃗, … , 𝑢 ⃗

𝑤 ∈ 𝑊

Ex.2a

�⃗� =
4
0
3

,   𝑢⃗ =
2
2
0

,   𝑢⃗ =
0
0
1

Construct the decomposition �⃗� = 𝑦 + 𝑤 where 𝑦 is the orthogonal projection of �⃗� onto the subspace 𝑊 =
Span{𝑢⃗, 𝑢⃗}.

𝑦 =
�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ +

�⃗� 𝑢⃗

𝑢⃗ 𝑢⃗
𝑢⃗ =

8

8
𝑢⃗ +

3

1
𝑢⃗ = 𝑢⃗ + 3𝑢⃗ ∈ 𝑊 =

2
2
3

→ 𝑤 = �⃗� − 𝑦 =
4
0
3

−
2
2
3

=
2

−2
0

Check: 𝑤 𝑢⃗ = 𝑤 𝑢⃗ = 0 ∈ 𝑊

Best Approximation Theorem
Theorem
Let 𝑊 be a subspace of ℝ , �⃗� ∈ ℝ , and 𝑦 is the orthogonal projection of �⃗� onto 𝑊. Then for any 𝑤 ≠ �⃗� ∈ 𝑊, we have

‖�⃗� − 𝑦‖< ‖�⃗� − 𝑤‖
That is, 𝑦 is the unique vector in 𝑊 that is closest to �⃗�.

Proof
The orthogonal projection of �⃗� onto 𝑊 is the closest point in 𝑊 to �⃗�

�⃗� ∈ 𝑊 �⃗� − 𝑦 = 𝑤 ∈ 𝑊

�⃗� ≠ 𝑦 �⃗� − 𝑦 ∈ 𝑊

Pythagorean Theorem:
‖�⃗� − �⃗�‖= ‖�⃗� − 𝑦‖+ ‖�⃗� − 𝑦‖

‖�⃗� − �⃗�‖> ‖�⃗� − 𝑦‖⇒ ‖�⃗� − �⃗�‖> ‖�⃗� − 𝑦‖

Ex.2b

�⃗� =
4
0
3

,   𝑢⃗ =
2
2
0

,   𝑢⃗ =
0
0
1

What is the distance between �⃗� and subspace 𝑊 = Span{𝑢⃗, 𝑢⃗}? Note that these are the same vectors in Ex.2a
The distance between  �⃗� and subspace 𝑊 is ‖𝑤‖= √8 = 2√2

𝐴�⃗� = �⃗� is consistent iff �⃗� ∈ Col(𝐴)



Gram-Schmidt:
Process for converting basis to an orthonormal one•
Idea: successively subtract projection of current vector onto previous ones•
Start with basis {𝑣⃗, … , 𝑣⃗}

𝑣⃗ = 𝑥⃗

𝑣⃗ = 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗

𝑣⃗ = 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ −

𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗

⋮

𝑣⃗ = 𝑥 ⃗ −
𝑥 ⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ − ⋯ −

𝑥 ⃗ 𝑣 ⃗

𝑣 ⃗ 𝑣 ⃗
𝑣 ⃗

•

Worksheet 6.3 and 6.4: Orthogonal Projections, The Gram-Schmidt Process

�⃗� =
0
2
4

,   𝑢⃗ =
1
1
0

,   𝑢⃗ =
−1
1
0

Determine whether 𝑢⃗ and 𝑢⃗
Are linearly independent

True1)
i.

Are mutually orthogonal
True1)

ii.

Are orthonormal
False1)

iii.

Span ℝ
False1)

iv.

a.

Is �⃗� in 𝑊 = Span(𝑢⃗, 𝑢⃗)

Falsei.
b.

Compute the vector, 𝑦 ∈ 𝑊, that most closely appromixmates �⃗�.

𝑦 = proj ⃗�⃗� = proj ⃗�⃗� + proj ⃗�⃗� =
0
2
0

i.

c.

Construct a vector, 𝑧, that is in 𝑊
0
0
4

= �⃗� − 𝑦i.

d.

1.

Compute the 𝑄𝑅 decomposition of 𝐴 =
1 5
3 1

−2 4
𝐴 = 𝑄𝑅, 𝑄 has orthonomal columns; 𝑅 upper triangulara.
To find 𝑄, run G-S on columns of 𝐴 to get 𝑄 = {𝑣⃗, … , 𝑣⃗}b.

𝑣⃗ =
1
3

−2
⇒

1

√14

1
3

−2
c.

𝑣⃗ =
5
1
4

−
0

14

1
3

−2
=

5
1
4

⇒
1

√42

5
1
4

d.

𝑄 =

⎝

⎜⎜
⎛

1
√14

5
√42

3
√14

1
√42

−2
√14

4
√42⎠

⎟⎟
⎞

e.

𝑅 = 𝑄 𝐴 =

1
√14

3
√14

−2
√14

5
√42

1
√42

4
√42

1 5
3 1

−2 4
=

14
√14

0

0 5
√10

f.

2.

{𝑣⃗, 𝑣⃗, 𝑣⃗} is an orthogonal basis for subspace 𝑉. Classify each set as a bassi for 𝑉, an orthogonal basis for 𝑉, or not a basis for 𝑉.
{3𝑣⃗, 2𝑣⃗, 𝑣⃗}

(3𝑣 ) (2𝑣 ) = 6 𝑣 𝑣 = 0i.

⇒ Orthogonal basisii.

a.

{(𝑣⃗ + 𝑣⃗), (𝑣⃗ − 𝑣⃗), 𝑣⃗}

(𝑣⃗ + 𝑣⃗) (𝑣⃗ − 𝑣⃗) = 𝑣 𝑣 − 𝑣 𝑣 + 𝑣 𝑣 − 𝑣 𝑣 = ‖𝑣 ‖+ ‖𝑣 ‖≠ 0i.
⇒ Not necessarly an orthogonal basisii.

b.

{(𝑣⃗ + 𝑣⃗), (𝑣⃗ − 𝑣⃗), (𝑣⃗ − 𝑣⃗)}

(𝑣⃗ + 𝑣⃗) (𝑣⃗ − 𝑣⃗) = 𝑣 𝑣 − 𝑣 𝑣 + 𝑣 𝑣 − 𝑣 𝑣 = ‖𝑣 ‖+ ‖𝑣 ‖≠ 0i.
⇒ Not necessarly an orthogonal basisii.

c.

3.

Indicate whether he statement are true or false.
If �⃗� is in subspace 𝑊, the orthogonal projection of �⃗� onto 𝑊 is �⃗�

Truei.
a.

If 𝑐 is orthogonal to �⃗� and 𝑤,  then �⃗� is also orthogonal to �⃗� − 𝑤
Truei.

b.

4.

If possible, give an example of:

Two linearly independent vectors that are orthogonal to 
2
0

−1
.

1
0
2

,
0
1
0

i.

a.

A subspace of ℝ , 𝑆, such that dim(𝑆 ) = 2

Span
1
1
1

i.

b.

5.

Written Explanation Exercise Let 𝑢 , … , 𝑢 be an orthonormal family of vectors in ℝ . Explain why applying the Gram-Schmidt process 
to the pivotal columns of the 𝑛 × (𝑛 + 𝑘) matrix 𝐴 = [𝑢 … 𝑢 𝑒 … 𝑒 ] gives an orthonormal basis of ℝ that contains 𝑢 , … , 𝑢 .

6.

Studio 19 & 20
Thursday, November 4, 2021 12:36 PM



Notes:
Section 6.4: The Gram-Schmidt Process

Ex.1
The vectors below span a subspace 𝑊 of ℝ . Construct an orthogonal basis for 𝑊.

𝑥⃗ =

1
1
1
1

, 𝑥⃗ =

0
1
1
1

, 𝑥⃗ =

0
0
1
1

Idea:  𝑊 = Span(𝑥⃗)

𝑊 = Span(𝑥⃗, 𝑥⃗)
𝑊 = Span(𝑥⃗, 𝑥⃗, 𝑥⃗) = 𝑊
Orthogonal basis for 𝑊

→ 𝑣⃗ = 𝑥⃗
1.

Orthogonal basis for 𝑊
𝑣 = 𝑥⃗ − proj ⃗𝑥⃗

= 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ ∈ 𝑊

=

0
1
1
1

−
3

4

1
1
1
1

=
1

4

−3
1
1
1

2.

𝑥⃗

𝑣

𝑣

Trick: take 𝑣⃗ =

−3
1
1
1

Orthogonal basis for 𝑊3.

𝑣 = 𝑥⃗ − proj 𝑥⃗ = 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ −

𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ =

1

3

0
−2
1
1

Trick: take 𝑣⃗ =

0
−2
1
1

→ {𝑣⃗, 𝑣⃗, 𝑣⃗} is an orthogonal basis of 𝑊

The Gram-Schmidt Process
Given a basis 𝑥⃗, … , 𝑥 ⃗ for a subspace 𝑊 of ℝ , iteratively define

𝑣⃗ = 𝑥⃗

𝑣⃗ = 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗

𝑣⃗ = 𝑥⃗ −
𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ −

𝑥⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗

⋮

𝑣⃗ = 𝑥 ⃗ −
𝑥 ⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ − ⋯ −

𝑥 ⃗ 𝑣 ⃗

𝑣 ⃗ 𝑣 ⃗
𝑣 ⃗

Proof
→ See example 1

Geometric Interpretation
Suppose 𝑥⃗, 𝑥⃗, 𝑥⃗ are linearly independent vectors in ℝ . We wish to construct an orthogonal basis for the space that 
they span.

We construct vectors 𝑣⃗, 𝑣⃗, 𝑣⃗, which form our orthogonal basis. 𝑊 = Span(𝑣⃗), 𝑊 = Span(𝑣⃗, 𝑣⃗)

Orthonormal Bases
Definition
A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.
Example
The two vectors below form an orthogonal basis for a subspace 𝑊. Obtain an orthonormal basis for 𝑊.

𝑣⃗ =
3
2
0

, 𝑣⃗ =
−2
3
1

√

3
2
0

,
√

−2
3
1

is an orthonormal basis for 𝑊

QR Factorization
Theorem
Any 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns has the QR factorization

𝐴 = 𝑄𝑅
Where
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𝑄 is 𝑚 × 𝑛, its columns are an orthonormal basis for Col(𝐴)1.
𝑅 is 𝑛 × 𝑛, upper triangular, with positive entries on its diagonal, and the length of the 𝑗 column of 𝑅 is equal to 
the length of the 𝑗 column of 𝐴.

2.

Proof
𝐴 = (𝑎⃗, … , 𝑎 ⃗) : 𝑎⃗, … , 𝑎 ⃗ linearly independent
𝑄 = (𝑞⃗, … , 𝑞 ⃗) : 𝑞⃗, … , 𝑞 ⃗ orthonormal basis for Col(𝐴)

Obtained by Gram-Schmidt
Section 6.3: decomposition of a matrix in an orthonormal basis:

𝑎⃗ = (𝑎⃗ 𝑞⃗) 𝑞⃗ = 𝑟 𝑞⃗

𝑎⃗ = (𝑎⃗ 𝑞⃗) 𝑞⃗ + (𝑎⃗ 𝑞⃗) 𝑞⃗ += 𝑟 𝑞⃗ + 𝑟 𝑞⃗

⋮ if 𝑟 < 0: change 𝑞⃗ change −𝑞⃗ in 𝑄
𝑎 ⃗ = (𝑎 ⃗ 𝑞⃗) 𝑞⃗ + ⋯ + (𝑎 ⃗ 𝑞 ⃗) 𝑞 ⃗ = 𝑟 𝑞⃗ + ⋯ + 𝑟 𝑞 ⃗

Define: 𝑅 =

𝑟 𝑟
⋱

⋯ 𝑟
⋮

(0) ⋱ ⋮
𝑟

= (𝑟⃗ … 𝑟⃗)

𝑄𝑅 = 𝑄𝑟⃗

⃗ ⃗

… 𝑄𝑟⃗

⋮ ⃗ ⋯ ⃗

→ 𝐴 = 𝑄𝑅



Notes:
Ex.

Construct the 𝑄𝑅 decomposition for 𝐴 =
3 −2
2 3
0 1

= (𝑎⃗ 𝑎⃗)

⃗ ⃗

Why?: 𝐴�⃗� = �⃗�

𝑄𝑅�⃗� = �⃗�

→ 𝑅�⃗� = 𝑄 �⃗�

𝑄 =

⎝

⎜
⎛

3
√13

−2
√14

2
√13

3
√14

0 1
√14 ⎠

⎟
⎞

𝑅 = 𝑄 𝐴

3
√13

2
√13

0

−2
√14

3
√14

3
√14

3 −2
2 3
0 1

= √13 0

0 √14

Further Example

Construct the 𝑄𝑅 decomposition for 𝐴 =

1 −1 −1
0 0 2
−1 1 −3
1 0 1

* orthogonal basis of Col(𝐴): 𝑣⃗, 𝑣⃗, 𝑣⃗

𝑣⃗ = 𝑎⃗ =

1
0

−1
1

𝑣⃗ = 𝑎⃗ −
𝑎⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ =

−1
0
1
0

−
−2

3

1
0

−1
1

=

⎝

⎜
⎛

− 1
3

0
1

3
2

3 ⎠

⎟
⎞

, take 𝑣⃗ =

−1
0
1
2

𝑣⃗ = 𝑎⃗ −
𝑎⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ −

𝑎⃗ 𝑣⃗

𝑣⃗ 𝑣⃗
𝑣⃗ =

−1
2

−3
1

−
3

3

1
0

−1
1

− 0𝑣⃗ =

−2
2

−2
0

, take 𝑣⃗ =

−1
1

−1
0

→ 𝑄 =

⎝

⎜
⎜
⎜
⎛

1
√3

−1
√6

−1
√3

0 0 1
√3

−1
√3

1
√6

−1
√3

1
√3

2
√6

0
⎠

⎟
⎟
⎟
⎞

→ 𝑅 = 𝑄 �⃗� =

⎝

⎜
⎛

1
√3

0

−1
√6

0

−1
√3

1
√3

−1
√3

1
√3

1
√6

2
√6

−1
√3

0
⎠

⎟
⎞

1 −1 −1
0 0 2
−1 1 −3
1 0 1

=

⎝

⎜
⎛

√3 −2
√3

√3

0 2
√6

0

0 0 6
√3⎠

⎟
⎞

Check: ‖𝑟⃗‖= + = √2 = ‖𝑎⃗‖

‖𝑟⃗‖= 3 +
36

3
= √15 = ‖𝑎⃗‖

If you find 𝑄 and

𝑅 =
1 ∗ ∗
0 −2 ∗
0 0 3

𝐴 = 𝑄𝑅 = 𝑄
1 0 0
0 −1 0
0 0 1

: ←

1 0 0
0 −1 0
0 0 1

𝑅

: ←

Section 6.5: Least-Square Problems

Inconsistent Systems
Suppose we want to construct a line of the form

𝑦 = 𝑚𝑥 + 𝑏
that best fits the data below

(3,3)
(2,2.5)

(1,1)
(0,0.5)
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1 0
1 1
1 2
1 3

𝑏
𝑚

=

0.5
1

2.5
3

Can we ‘solve’ this inconsistent system?

If 𝑦 = 𝑚𝑥 + 𝑏
First Part: (𝑥, 𝑦) = (0,0.5): 0.5 = 𝑏
Second Part: (𝑥, 𝑦) = (1,1): 1 = 𝑚 + 𝑏 ⇒ 𝑚 = 0.5
Third Part: (𝑥, 𝑦) = (2,2.5): 2.5 = 2𝑚 + 𝑏

.

⇒ 𝑁𝑂

The Least Squares Solution to a Linear System
Definition: Least Squares Solution
Let 𝐴 be a 𝑚 × 𝑛 matrix. A least squares solution to 𝐴�⃗� = �⃗� is the solution 𝑥 for which

�⃗� − 𝐴𝑥≤�⃗� − 𝐴�⃗�

for all �⃗� ∈ ℝ .
If �⃗� is a solution:

�⃗� − 𝐴�⃗�=0⃗= 0

Here: if the system is inconsistent:
�⃗� − 𝐴�⃗�> 0 ∀�⃗� ∈ ℝ

Least-Square solution: 𝑥:
�⃗� − 𝐴𝑥≤�⃗� − 𝐴�⃗� ∀�⃗� ∈ ℝ



Notes:
A Geometric Interpretation
The vector �⃗� is closer to 𝐴�⃗� than to 𝐴�⃗� for all other �⃗� ∈ Col(𝐴).

If �⃗� ∈ Col(𝐴), then 𝑥 is a solution to 𝐴�⃗� = �⃗�1.
Seek 𝑥 so that 𝐴𝑥 is as close to �⃗� as possible. That is, 𝑥 should solve 𝐴𝑥 = 𝑏 where 𝑏 is the orthogonal projection of 
�⃗� onto Col(𝐴)

2.

The Normal Equations
Theorem (Normal Equations for Least Squares)
The least squares solutions to 𝐴�⃗� = �⃗� coincide with the solutions to

𝐴 𝐴�⃗� = 𝐴 �⃗�

Derivation

𝑥 is the least squares solution, is equivalent to �⃗� − 𝐴𝑥 is orthogonal to Col(𝐴) and Col(𝐴) = Null(𝐴)1.

A vector �⃗� is Null(𝐴) if and only if 𝐴 �⃗� = 0⃗2.
So we obtain the Normal Equations:

𝑥 least square solution
Iff �⃗� − 𝐴𝑥 ∈ Null(𝐴 )

Iff 𝐴�⃗� − 𝐴𝑥= 0

Iff 𝐴 𝐴𝑥 = 𝐴 �⃗�

3.

Ex.
Compute the least squares solution to 𝐴�⃗� = �⃗�, where

𝐴 =
4 0
0 2
1 1

, �⃗� =
2
0

11
Solution:

𝐴 𝐴 =
4 0 1
0 2 1

4 0
0 2
1 1

=
17 1
1 5

𝐴 �⃗� =
4 0 1
0 2 1

2
0

11
=

19
11

The normal equations 𝐴 𝐴𝑥 = 𝐴 �⃗� because
17 1
1 5

�⃗� =
19
11

𝐵 =
1

85 − 1
5 −1

−1 17

→ �⃗� =
1

84
5 −1

−1 17
19
11

=
1
2

Theorem
Theorem (Unique Solutions for Least Squares)
Let 𝐴 be any 𝑚 × 𝑛 matrix. These statements are equivalent.

The equation 𝐴�⃗� = �⃗� has a unique least-squares solution for each �⃗� ∈ ℝ .1.
The columns of 𝐴 are linearly independent.2.
The matrix 𝐴 𝐴 is invertible.3.

And, if these statemetns hold, the least square solution is
𝑥 = (𝐴 𝐴) 𝐴 �⃗�

Use heuristic: 𝐴 𝐴 plays the role of ‘length-squared’ of the matrix 𝐴. 

Ex.2
Compute the least squares solution to 𝐴�⃗� = �⃗�

𝐴 =

1 −6
1 −2
1 1
1 7

, �⃗� =

−1
2
1
6

Hint: the columns of 𝐴 are orthogonal.
𝐴 = (𝑎⃗ 𝑎⃗): linearly independent (unique least-square solution), easy to compute 𝑏

𝑏 =
�⃗� 𝑎⃗

𝑎⃗ 𝑎⃗
𝑎⃗ +

�⃗� 𝑎⃗

𝑎⃗ 𝑎⃗
𝑎⃗ =

8

4
𝑎⃗ +

45

90
𝑎⃗ = 2𝑎⃗ +

1

2
𝑎⃗

→ 𝑥 =
2

1
2
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Notes:
Theorem (Least Squares and 𝑄𝑅 decomposition. Then for each �⃗� ∈ ℝ the equation 𝐴�⃗� = �⃗� has the unique least 
squares solution

𝑅𝑥 = 𝑄 �⃗�.
(Remember, 𝑅 is upper triangular, so the equation above is solved by back-substitution.)

𝐴 = 𝑄𝑅

Normal Equations: 𝐴 𝐴�⃗� = 𝐴 �⃗�

𝑅 𝑄 𝑄𝑅�⃗� = 𝑅 𝑄 �⃗�

𝑅 𝑅�⃗� = 𝑅 𝑄 �⃗�

𝑅�⃗� = 𝑄 �⃗�

Ex.3 Compute the least squares solution to 𝐴�⃗� = �⃗�, where

𝐴 =

1 3 5
1 1 0
1 1 2
1 3 3

, �⃗� =

3
5
7

−3
Solution. The 𝑄𝑅 decomposition of 𝐴 is

𝐴 = 𝑄𝑅 =
1

2

1 1 1
1 −1 −1
1 −1 1
1 1 −1

2 4 5
0 2 3
0 0 2

𝑄 �⃗� =
1

2

1 1
1 −1
1 −1

1 1
−1 1
1 −1

3
5
7

−3

=
6

−6
4

And then we solve by backend substitution  𝑅�⃗� = 𝑄 �⃗�
2 4 5
0 2 3
0 0 2

𝑥
𝑥
𝑥

=
6

−6
4

→

𝑥 = 2
𝑥 = −6
𝑥 = 10

→ �⃗� =
10
−6
2

Section 6.6: Applications to Linear Models

The Least Squares Line
Graph below gives an approximate linear relationship between 𝑥 and 𝑦.

Black circles are data.1.
Blue line is the least squares line.2.
Lengths of red lines are the residuals3.

The least squares line minimizes the sum of squares of the residuals

Ex.1 Compute the least squares line 𝑦 = 𝛽 + 𝛽 𝑥 that best fits the data

X 2 5 7 8

Y 1 1 4 3

We want to solve
1 2
1 5
1 7
1 8

𝛽
𝛽

=

1
1
4
3

This is a least-squares problem: 𝑋𝛽 = �⃗�

The normal equations are 𝑋 𝑋 =
1 1
2 5

1 1
7 8

1 2
1 5
1 7
1 8

=
4 22

22 142

𝑋 �⃗� =
1 1
2 5

1 1
7 8

1
1
4
3

=
9

59

So the least-squares solution is given by:
4 22

22 142

𝛽
𝛽

=
9

59

𝑦 = 𝛽 + 𝛽 𝑥 = −
5

21
+

19

42
𝑥

As we may have guessed, 𝛽 is negative, and 𝛽 is positive.

Least Squares Fitting for Other Curves
We con consider the least squares fitting for the form
𝑦 = 𝑐 + 𝑐 𝑓 (𝑥) + 𝑐 + 𝑐 𝑓 (𝑥) + ⋯ + 𝑐 + 𝑐 𝑓 (𝑥)
If functions 𝑓 are known, this is a linear problem in the 𝑐 variables.
Ex.
Consider the data in the table below

X 1 0 0 1

Y 2 1 0 6

Determine the coefficients 𝑐 and 𝑐 for the curve 𝑦 = 𝑐 𝑥 + 𝑐 𝑥 that best fits the data.
𝑥𝛽 = �⃗�

1 𝑥
⋮ ⋮
1 𝑥

cos(𝑥 ) sin(𝑥 )
⋮ ⋮

cos(𝑥 ) sin(𝑥 )

𝛽
𝛽
𝛽
𝛽

=

𝑦
⋮

𝑦

Normal Equations
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𝑋 𝑋 =
−1 0
1 0

0 1
0 1

−1 1
0 0
0 0
1 1

=
2 0
0 2

𝑋 �⃗� =
−1 0
1 0

0 1
0 1

2
1
0
6

=
4
8

2 0
0 2

4
8

→ 𝑐 = 2, 𝑐 = 4

Projection method:

𝑦 = Proj ( )�⃗� =
�⃗� 𝑥⃗

𝑥 𝑥
𝑥 +

�⃗� 𝑥⃗

𝑥 𝑥
𝑥

=
4

2
𝑥⃗ +

8

2
𝑥⃗ = 𝑋

2
4

→ 𝑐 =
2
4



Least Squares:
Want to solve 𝐴�⃗� = �⃗� but this system is inconsistent. Instead, find �⃗� to minimize 𝐴𝑥 − �⃗�.
Def. 𝑥 is a least squares solution to 𝐴�⃗� = �⃗� if 𝐴𝑥 − �⃗�<𝐴�⃗� − �⃗�

If 𝐴 has linearly independent columns, then 𝑥 = (𝐴 𝐴) 𝐴 �⃗�

Suppose 𝐴 has independent columns. 𝐴 = 𝑄𝑅, 𝑄 = [𝑢⃗ … 𝑢 ⃗] which forms {𝑢⃗, … , 𝑢 ⃗} orthonormal basis for Col(𝐴)

⇒ 𝑏 = Proj ( )�⃗� = Proj ⃗�⃗� + ⋯ Proj ⃗�⃗� =𝑢⃗ �⃗�𝑢⃗ + ⋯ +𝑢 ⃗ �⃗�𝑢 ⃗ = 𝑄
𝑢⃗ �⃗�

⋮

𝑢 ⃗ �⃗�

= 𝑄𝑄 �⃗�

𝐴𝑥 = 𝑄𝑄 �⃗� ⇒ 𝐴 𝐴𝑥 = 𝐴 𝑄𝑄 �⃗� = 𝑅 𝑄 𝑄𝑄 �⃗� = 𝐴 �⃗� ⇒ 𝑥 = (𝐴 𝐴) 𝐴 �⃗�

Worksheet 6.5 and 6.6: Least-Squares Problems, Applications to Linear Models
Worksheet Exercises

Fill in the blanks. These questions concern that least squares solution 𝑥 to 𝐴�⃗� = �⃗�.
If 𝐴 = 𝑄𝑅, then 𝐴 𝐴 = 𝑅 𝑅.a.
If the columns of 𝐴 are linearly independent, then 𝑥 = (𝐴 𝐴) 𝐴 �⃗�b.
If �⃗� is in the column space of 𝐴, then 𝐴𝑥 = �⃗�.c.
If 𝐴 = 𝑄𝑅, then 𝑅 is invertible then 𝑥 = 𝑅 𝑄 �⃗�d.

1.

These questions concern the least squares solution 𝑥 to 𝐴�⃗� = �⃗�. Indicate whether the statements are true or false.
The solution 𝑥 is chosen so that 𝐴𝑥 is close as possible to �⃗�.

Truei.
a.

If �⃗� ≠ 𝑥 then 𝐴𝑥 − �⃗�<𝐴�⃗� − �⃗�.
Falsei.
(𝐴 dependent columns)ii.

b.

If the columns of 𝐴 are linearly independent, then the least squares solution is unique.
Truei.

c.

2.

Use the 𝑄𝑅 decomposition to calculate the least squares solution to 𝐴�⃗� = �⃗�.

𝐴 = 𝑄𝑅 =

⎝

⎜
⎛

2
3 − 1

3
2

3
2

3
1

3 − 2
3⎠

⎟
⎞ 3 5

0 1
, �⃗� =

7
3
1

a.

3.

⇒ 𝑅𝑥 = 𝑄 �⃗� ⇒
3 5
0 1

𝑥 =
2

3
2

3
1

3

− 1
3

2
3 − 2

3

7
3
1

⇒
3 5
0 1

𝑥 =
7

−1
⇒ 𝑥 = 4, 𝑥 = −1 ⇒

4
−1

Written Explanation Exercise Explain step by step how to find the best fit line for a collection of 𝑛 data points 
𝑥
𝑦 , … ,

𝑥
𝑦 in ℝ . Why is 

the best fit line unqiue?

Line of best fit: 𝑦 = 𝑎𝑥 + 𝑏, 𝑎
𝑥
⋮

𝑥
+ 𝑏

1
1
1

=

𝑦
⋮

𝑦
⇒

𝑥 1
⋮ ⋮

𝑥 1

𝑎
𝑏

=

𝑦
⋮

𝑦

4.

Four points in ℝ with coordinates (𝑥, 𝑦, 𝑧) are give in the table below.
𝑥 − 1 0 2 1a.
𝑦 2 1 0 2b.
𝑧 9 1 0 − 1c.

5.

Determine the coefficients 𝑐 and 𝑐 for the plane 𝑧 = 𝑐 𝑥 + 𝑐 𝑦 that best fits the data. Hint:ÊnormalÊeqautions.

Studio 21
Thursday, November 11, 2021 12:31 PM



T or F
The range of 𝑇(𝑥) = 𝐴𝑥 is Row(𝐴)

False! range of 𝑇(𝑥) = 𝐴𝑥 is Col(𝐴)○
•

𝐴 =
1 2 3
0 0 0

𝐴
1
0
1

=
4
0

∈ Range(𝑇)

But, 𝐴
1
0
1

= 1
1
0

+ 0
2
0

+ 1
3
0

∈ Col(𝐴)

dimRow(𝐴)= dimCol(𝐴)

True (both are the # of pivots)○
•

Given a subspace 𝑆 and a vector 𝑏, there is a unique 𝑥 ∈ 𝑆 that minimizes ‖𝑥 − 𝑏‖

True (the minimizer is just Proj 𝑏)○
•

If 𝐴 is 𝑛 × 𝑛 and invertible, then 𝐴 is diagonalizable.

False 1 0
1 1

counter example

𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = (1 − 𝜆) ⇒ 1 is an eigenvalue of alg. mult. 2
Is geom(1) = 2?

𝐴 − 𝐼~
0 1
0 0

⇒ geom(1) = 1.□

Since geom(1) < alg(1), 𝐴 is not diagonalizable□



○

•

A is 𝑛 × 𝑛 and has 𝑛 distinct eigenvalues, then 𝐴 is diagonalizable
True (alg(𝜆) = 1 for all 𝜆. 𝑆𝑖𝑛𝑐𝑒 1 ≤ geom(𝜆) ≤ alg(𝜆), geom(𝜆) = 1 for all 𝜆)○

•

Def. 𝐴 is diagonalizable if 𝐴 = 𝑃𝐷𝑃 where 𝐷 is diagonal.

Review Worksheet Exam 3
State True or False:

A matrix 𝐴 ∈ ℝ × which has eigenvalues 0, 1, 2, 3 is diagonalizable.
Truei.

a.

There exists a matrix 𝐴 ∈ ℝ × with eigenvalues 𝑖, 𝑖 + 1,1.
Falsei.

b.

If 𝑢, 𝑣 are orthogonal vectors then ‖2𝑢 − 3𝑣‖= ‖2𝑢 + 3𝑣‖

Truei.
c.

A least squares solution 𝑥 for the system 𝐴𝑥 = 𝑏 satisfies 𝐴𝑥 = 𝑏 if and only if 𝑏 ∈ Col(𝐴).
Truei.

d.

1.

Use Gram Schmidt to find an orthonormal basis for the space spanned by the following vectors:
1
2
1

,
2
2
1

,
3
2
2

2.

1

√6

1
2
1

,
1

√30

5
−2
−1

,
1

√5

0
−1
2

Find the best fit line 𝑦 = 𝑚𝑥 + 𝑏 for the following data:

X 1 2 3 4

Y 3 1 -1 5

3.

Find matrices 𝑃 and 𝐷 such that 𝑃 is invertible, 𝐷 is diagonal, and 𝐴 = 𝑃𝐷𝑃 , where 𝐴 =
4 −3 −3
3 −2 −3

−1 1 2
. The characteristic 

polynomial of 𝐴 is 𝑝 (𝑡) = −(𝑡 − 1) (𝑡 − 2).

4.

Find matrices 𝑃 and 𝐶 such that 𝑃 is invertible, 𝐶 is a rotation-dilation matrix, and 𝐴 = 𝑃𝐶𝑃 , where 𝐴 =
3 −2
1 1

5.
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Notes:

Section 7.1: Diagonalization of Symmetrix Matrices

Symmetric Matrices
Definition
Matrix 𝐴 is symmetric if 𝐴 = 𝐴
Ex. Which of the following matrices are symmetric? Symbols * and * represent real numbers.

𝐴 = [∗]

𝐵 =
0 1
1 0

𝐶 =
4 0
0 0

𝐷 =
1 0
1 0

𝐸 =
4 2
0 0
0 0

𝐹 =

4 2
2 0

0 1
7 4

0 7
1 4

6 0
0 3

𝑨𝑻𝑨 is Symmetric
A very common example: For any matrix 𝐴 with columns 𝑎 , . . , 𝑎

𝐴 𝐴 =

⎣
⎢
⎢
⎡
− 𝑎 −

− 𝑎 −
⋮ ⋮ ⋮
− 𝑎 −⎦

⎥
⎥
⎤ | |

𝑎 𝑎
| |

⋯ |

⋯ 𝑎
⋯ |

=

⎣
⎢
⎢
⎡
𝑎 𝑎 𝑎 𝑎

𝑎 𝑎 𝑎 𝑎

⋯ 𝑎 𝑎

⋯ 𝑎 𝑎
⋮ ⋮

𝑎 𝑎 𝑎 𝑎
⋱ ⋮
⋯ 𝑎 𝑎 ⎦

⎥
⎥
⎤

𝑎 𝑎 = 𝑎 𝑎 = 𝑎 𝑎 = 𝑎 𝑎
(𝐴 𝐴) = 𝐴 (𝐴 ) = 𝐴 𝐴

Symmetric Matrices and their Eigenspaces
Theorem
𝐴 is a symmetric matrix, with eigenvectors 𝑣⃗ and 𝑣⃗ corresponding to two distinct eigenvalues. Then 𝑣⃗ and 𝑣⃗ are 
orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.

Proof:
𝑣⃗ eigenvector for 𝜆 with 𝜆 ≠ 𝜆
𝑣⃗ eigenvector for 𝜆

By the previous fact:
𝐴𝑣⃗ 𝑣⃗ = 𝑣⃗ 𝐴𝑣⃗, 𝜆 = 𝐴

Thus: (𝜆 − 𝜆 )𝑣⃗ 𝑣⃗ = 0

Ex.1
Diagonalize 𝐴 using an orthogonal matrix. Eigenvalues of 𝐴 are given.

𝐴 =
0 0 1
0 1 0
1 0 0

, 𝜆 = −1,1

If 𝐴 is symmetric and diagonalizable:
𝑃: matrix of orthonormal eigenvectors
→ 𝐴 = 𝑃𝐷𝑃 = 𝑃𝐷𝑃

𝜆 = −1: 𝐴 + 𝐼 =
1 0 1
0 2 0
1 0 1

~
1 0 1
0 1 0
0 0 0

→ 𝑣⃗ =
−1
0
1

𝜆 = 1: 𝐴 − 𝐼 =
−1 0 1
0 0 0
1 0 −1

~
−1 0 1
0 0 0
0 0 0

→ 𝑣⃗ =
0
1
0

Here: 𝑣⃗ 𝑣⃗ = 𝑣⃗ 𝑣⃗ = 0

𝑃 =

⎝

⎜
⎛

− 1
√2

0 1
√2

0 1 0
1

√2
0 1

√2⎠

⎟
⎞

, 𝐷 =
−1 0 0
0 1 0
0 0 1

Spectral Theorem
Recall: If 𝑃 is an orthogonal 𝑛 × 𝑛 matrix, then 𝑃 = 𝑃 , which implies 𝐴 = 𝑃𝐷𝑃 is diagonalizable and symmetric.
Theorem: Spectral Theorem
An 𝑛 × 𝑛 symmetric matrix 𝐴 has the following properties.

All eigenvalues of 𝐴 are real.1.
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The dimension of each eigenspace is full, that it's dimension is equal to it's algebraic multiplicity.2.
The eigenspaces are mutually orthogonal.3.
𝐴 can be diagonalized 𝐴 = 𝑃𝐷𝑃 , where 𝐷 Is diagonal and 𝑃 is orthogonal.4.

Proof:
Assume that 𝜆 ≠ ℝ1.
𝑣⃗ eigenvector for 𝜆
𝑣⃗ eigenvector for 𝐼

For symmetric matrices:
𝐴𝑣⃗ 𝑣⃗ = 𝑣⃗ 𝐴𝑣⃗, 𝜆 = 𝐴

Thus: 𝑣⃗ 𝑣⃗ = 0

If 𝑣⃗ =

𝑧
⋮

𝑧
: 𝑣⃗ 𝑣⃗ =

|𝑧 |
⋮

|𝑧 |

Spectral Decomposition of a Matrix
Spectral Decomposition
Suppose 𝐴 can be orthogonally diagonalized as

𝐴 = 𝑃𝐷𝑃 = [𝑢⃗ ⋯ 𝑢 ⃗]
𝜆 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆

=
𝑢⃗

⋮

𝑢 ⃗
Then 𝐴 has the decomposition

𝐴 = 𝜆 𝑢⃗𝑢⃗ + ⋯ + 𝜆 𝑢 ⃗𝑢 ⃗ = 𝜆 𝑢⃗𝑢⃗

Each term in the sum, 𝜆 𝑢⃗𝑢⃗ , is an 𝑛 × matrix with rank 1

𝑢⃗ =
𝑢⃗
⋮

𝑢 ⃗
𝑢⃗𝑢⃗ = [𝑢 𝑢⃗ ⋯ 𝑢 𝑢 ⃗]

𝐴 = [𝑢⃗ ⋯ 𝑢 ⃗]
𝜆 𝑢⃗

⋮

𝜆 𝑢 ⃗

=

𝑢 𝑢
⋮ ⋮

𝑢 𝑢

𝑢
⋯ ⋮

𝑢

𝜆 𝑢 ⃗ ⋯ 𝜆 𝑢 ⃗
⋮ ⋮

𝜆 𝑢 ⃗ ⋯ 𝜆 𝑢 ⃗
= 𝜆 𝑢⃗𝑢⃗ + ⋯ + 𝜆 𝑢 ⃗𝑢 ⃗

Ex.2
Construct a spectral decomposition for 𝐴 whose orthogonal diagonalization is given.

𝐴 =
3 1
1 3

= 𝑃𝐷𝑃 =

1
√2

− 1
√2

1
√2

1
√2

4 0
0 2

1
√2

1
√2

− 1
√2

1
√2

𝑢⃗ =

1
√2

1
√2

𝜆 = 4

𝑢⃗ =
− 1

√2
1

√2
𝜆 = 2

𝐴 = 𝜆 𝑢⃗𝑢⃗ + 𝜆 𝑢⃗𝑢⃗

𝑢⃗𝑢⃗ =

1
√2

1
√2

1
√2

1
√2

=

1
√2

1
√2

1
√2

1
√2

𝑢⃗𝑢⃗ =
− 1

√2
1

√2

− 1
√2

1
√2

=

1
√2

− 1
√2

− 1
√2

1
√2

𝐴 = 4

1
√2

1
√2

1
√2

1
√2

+ 2

1
√2

− 1
√2

− 1
√2

1
√2

=
2 2
2 2

+
1 −1

−1 1
=

3 1
1 3



Notes:

Section 7.2: Quadratic Forms

Quadratic Forms
Definition
A quadratic form is a function 𝑄: ℝ → ℝ, given by

𝑄(�⃗�) = �⃗� 𝐴�⃗� = [𝑥 𝑥 ⋯ 𝑥 ]

𝑎 𝑎
𝑎 𝑎

⋯ 𝑎
⋯ 𝑎

⋮ ⋮
𝑎 𝑎

⋱ ⋮
⋯ 𝑎

Matrix 𝐴 is 𝑛 × 𝑛 and symmetric.

In the above, �⃗� is a vector of variables

𝐴 =
1 0
0 1

: 𝑄(�⃗�) = (𝑥 𝑥 ) 1 0
0 1

𝑥
𝑥 = 𝑥 + 𝑥

Ex.1
Compute the quadratic form �⃗� 𝐴�⃗� for the matricies below
For 𝐴:

𝑄(�⃗�) = (𝑥 𝑥 )
4 0
0 3

𝑥
𝑥 = (𝑥 𝑥 )

4𝑥
3𝑥

= 4𝑥 + 3𝑥

For 𝐵: 

𝑄(�⃗�) = (𝑥 𝑥 )
4 1
1 −3

𝑥
𝑥 = (𝑥 𝑥 )

4𝑥 + 𝑥
𝑥 − 3𝑥

= 4𝑥 + 𝑥 𝑥 + 𝑥 𝑥 − 3𝑥 = 4𝑥 + 2𝑥 𝑥 − 3𝑥

Cross-Term: the coefficients

Ex.1 - Surface Plots
The surfaces for Example 1 are shown below.
StudentsÊareÊnotÊexpectedÊtoÊbeÊableÊtoÊsketchÊquadraticÊsurfaces,ÊbutÊitÊisÊhelpfulÊtoÊseeÊwhatÊtheyÊlookÊlike.

Ex.2
Write 𝑄 in the form �⃗� 𝐴�⃗� for �⃗� ∈ ℝ

𝑄(�⃗�) = 5𝑥 − 2𝑥 + 3𝑥 + 6𝑥 𝑥 − 12𝑥 𝑥

𝐴 =
5 0 3
0 −1 −6
3 −6 3

Change of Variable
If �⃗� is a variable vector in ℝ , then a change of variable can be represented as:

�⃗� = 𝑃�⃗�, or �⃗� = 𝑃 �⃗�
With this change of variable, the quadratic form �⃗� 𝐴�⃗� becomes:

𝑄 = �⃗� 𝐴�⃗� = (𝑃�⃗�) 𝐴𝑃�⃗� = �⃗� 𝑃 𝐴𝑃 �⃗�

⃗

Idea: if 𝐴 is symmetric, there exists 𝑃 orthogonal and 𝐷 diagonal such that 𝐴 = 𝑃𝐷𝑃
→ 𝐷 = 𝑃 𝐴𝑃

Ex.3
Make a change of variable �⃗� = 𝑃�⃗� that transforms 𝑄 = �⃗� 𝐴�⃗� so that it does not have cross terms. The orthogonal 
decomposition of 𝐴 is given.

𝐴 =
3 2
2 6

= 𝑃𝐷𝑃 : 𝑄(�⃗�) = 3𝑥 + 4𝑥 𝑥 + 6𝑥

𝑃 =
1

√5

2 1
−1 2

𝐷 =
2 0
0 7

𝑄(�⃗�) = �⃗� 𝐴�⃗� ⇒ 𝐴 = 𝑃𝐷𝑃 = �⃗� 𝐷�⃗� = 2𝑦 + 7𝑦
(No cross-terms)

Geometry
Suppose 𝑄(�⃗�) = �⃗� 𝐴�⃗�, where 𝐴 ∈ ℝ × is symmetric. Then the set of �⃗� that satisfies

𝐶 = �⃗� 𝐴�⃗�
defines a curve or surface in ℝ

Previous Example:
𝑄(�⃗�) = 3𝑥 + 4𝑥 𝑥 + 6𝑥

3𝑥 + 4𝑥 𝑥 + 6𝑥 = 8, 2𝑦 + 7𝑦 = 8

⇒ 𝑦 = 2, 𝑦 =
8

7

Principle Axes Theorem
Theorem
If 𝐴 is a symmetric matrix then there exists an orthogonal change of variable �⃗� = 𝑃�⃗� that transforms �⃗� 𝐴�⃗� to �⃗� 𝐷�⃗� with 
no cross-product terms.

Proof:
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𝐴 = 𝑃𝐷𝑃 𝑃𝐷𝑃
(𝑃 orthogonal, 𝐷 diagonal)
𝑄 = �⃗� 𝐴�⃗� = �⃗� 𝑃 𝐴𝑃�⃗� = �⃗� 𝐷�⃗� = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦

Ex.5

Compute the quadratic form 𝑄(�⃗�) = �⃗� 𝐴�⃗� for 𝐴 =
5 2
2 8

, and find a change of variable that removes the cross-product 

term.
𝑄(�⃗�) = 5𝑥 + 4𝑥 𝑥 + 8𝑥

𝐴 =
5 2
2 8

, 𝜆 = 4,9

|𝐴 − 𝜆𝐼| = 𝜆 − 13𝜆 + 36

𝜆 , =
13 ± √169 − 144

2
= 4 or 9

𝜆 = 4:

𝐴 − 4𝐼 =
1 2
2 4

, 𝑣⃗ =
2

−1
𝜆 = 9:

𝑣⃗ =
1
2
, since they are orthogonal

𝑃 =
1

√5

2 1
−1 2

, �⃗� = 𝑃�⃗�

→ 𝑄 = 4𝑦 + 9𝑦

Classifying Quadratic Forms
𝑄 = 𝑥 + 𝑥
𝑄 = −𝑥 − 𝑥

Definition
A quadratic form 𝑄 is

Positive definite if 𝑄 > 0 for all �⃗� ≠ 0⃗.1.
Negative definite if 𝑄 < 0 for all �⃗� ≠ 0⃗.2.
Positive semidefinite if 𝑄 ≥ 0 for all �⃗�.3.
Negative semidefinite if 𝑄 ≤ 0 for all �⃗�.4.
Indefinite if 𝑄 can be positive or negative.5.

Quadratic Forms and Eigenvalues
Theorem
If 𝐴 is a symmetric matrix with eigenvalues 𝜆 , then 𝑄 = �⃗� 𝐴�⃗� is

Positive definite iff 𝜆 > 0 for all 𝑖
Semidefinite ≥ 0a.

1.

Negative definite iff 𝜆 < 0 for all 𝑖
Semidefinite ≤ 0a.

2.

Indefinite iff 𝜆 > 0, 𝜆 < 0 for some 𝑖, 𝑗3.

Proof:
If 𝐴 = 𝑃𝐷𝑃

�⃗� = 𝑃�⃗�
𝑄 = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦

Ex.6
We can now return to our motivating question: does this inequality hold for all 𝑥, 𝑦?

𝑥 − 6𝑥𝑦 + 9𝑦 ≥ 0

𝐴 =
1 −3

−3 9

Eigenvalues: 0, 10
𝑄 is positive semidefinite

𝐴 =
2 4
4 5

: |𝐴| = −6 = 𝜆 𝜆 ⇒ one is positive and one is negative

𝑄 is indefinite

6𝑥 + 3𝑥 𝑥 + 7𝑥 ≥ 0?

𝐴 =
6 3

2
3

2 7

⇒ Positive definite



Notes:

Section 7.3: Constrained Optimization

Ex.1
The surface of a unit sphere in ℝ is given by

1 = 𝑥 + 𝑥 + 𝑥 = ‖�⃗�‖
𝑄 is a qunaitity we want to optimize

𝑄(�⃗�) = 9𝑥 + 4𝑥 + 3𝑥
Find the largest and smallest values of 𝑄 on the surface of the sphere.

3(𝑥 + 𝑥 + 𝑥 ) ≤ 𝑄(�⃗�) ≤ 9(𝑥 + 𝑥 + 𝑥 )
Where (𝑥 + 𝑥 + 𝑥 ) = 1

Here:
The minimum is 3, attained at �⃗� = ±𝑒⃗
The maximum is 9, attained at �⃗� = ±𝑒⃗

A Constrained Optimization Problem
Suppose we wish to find the maximum or minimum values of

𝑄(�⃗�) = �⃗� 𝐴�⃗�
Subject to

‖�⃗�‖= 1
That is, we want to find

𝑚 = min{𝑄(�⃗�): ‖�⃗�‖= 1}
𝑀 = max{𝑄(�⃗�): ‖�⃗�‖= 1}

This is an example of a constrained optimization problem. Note that we may also want to know were these extreme 
values are obtained.

Constrained Optimization and Eigenvalues
Theorem
If 𝑄(�⃗�) = �⃗� 𝐴�⃗�, 𝐴 is a real 𝑛 × 𝑛 symmetric matrix, with eigenvalues

𝜆 ≥ 𝜆 ⋯ ≥ 𝜆
and associated normalized eigenvectors

𝑢⃗, 𝑢⃗, … , 𝑢 ⃗
Then, subject to the constraint ‖�⃗�‖= 1,

The maximum value of 𝑄(�⃗�) = 𝜆 , attained at �⃗� = ±𝑢⃗.•
The minimum value of 𝑄(�⃗�) = 𝜆 , attained at �⃗� = ±𝑢 ⃗.•

Proof:
𝑃 = (𝑢⃗, … , 𝑢 ⃗) orthogonal

Define �⃗� by �⃗� = 𝑃�⃗�
𝑄 = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦
Here 1 = ‖�⃗�‖= ‖𝑃�⃗�‖= ‖�⃗�‖since 𝑃 has orthonormal columns
As in the previous example:

Minimum is 𝜆 , attained for �⃗� = ±𝑒 ⃗
Then �⃗� = ±𝑃𝑒 ⃗ = ±𝑢 ⃗

Maximum is 𝜆 , attained for �⃗� = ±𝑒⃗
Then �⃗� = ±𝑃𝑒⃗ = ±𝑢⃗

Ex.2
Calculate the maximum and minimum values of Q(�⃗�) = �⃗� 𝐴�⃗�, �⃗� ∈ ℝ , subject to ‖�⃗�‖= 1, and identify points where these 
values are obtained.

𝑄(�⃗�) = 𝑥 + 2𝑥 𝑥
The symmetric matrix 𝐴 associated to 𝑄 is

𝐴 =
1 0 0
0 0 1
0 1 0

|𝐴 − 𝜆𝐼| = (𝐼 − 𝜆) −𝜆 1
1 −𝜆

= (1 − 𝜆)(𝜆 − 1)(1 − 𝜆)(𝜆 + 1)(𝜆 − 1)

Eigenvalues: 1,1, -1
Eigenvectors:

𝜆 = 𝜆 = 1: (𝐴 − 𝐼) =
0 0 0
0 −1 1
0 1 −1

~
0 1 −1
0 0 0
0 0 0

→ 𝑢⃗ =
1
0
0

, 𝑢⃗ =
1

√2

0
1
1

𝜆 = −1: by orthogonality:

→ 𝑢⃗ =
1

√2

0
1

−1
The minimum value of −1, attained at �⃗� = ±𝑢⃗.•
The maximum value of 1, attained at �⃗� = ±𝑢⃗.

Or �⃗� = ±𝑢⃗○
Or �⃗� = 𝑎𝑢⃗ + 𝑏𝑢⃗ with 𝑎 + 𝑏 = 1○
‖�⃗�‖= 𝑎 + 𝑏

It is a circle!
○

•

Geom. Multiplicity = 1, line
Geom. Multiplicity = 2, circle

An Orthogonality Constraint
Theorem
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Suppose 
𝑄(�⃗�) = �⃗� 𝐴�⃗�, 𝐴 is a real 𝑛 × 𝑛 symmetric matrix, with eigenvalues

𝜆 ≥ 𝜆 ⋯ ≥ 𝜆
and associated normalized eigenvectors

𝑢⃗, 𝑢⃗, … , 𝑢 ⃗
Then, subject to the constraint ‖�⃗�‖= 1, �⃗� 𝑢⃗ = 0,

The maximum value of 𝑄(�⃗�) = 𝜆 , attained at �⃗� = ±𝑢∗⃗.•
The minimum value of 𝑄(�⃗�) = 𝜆 , attained at �⃗� = ±𝑢 ⃗.•

Note that 𝜆 is the second largest eigenvalue of 𝐴.
𝑃 = (𝑢⃗, … , 𝑢 ⃗) orthogonal

Define �⃗� by �⃗� = 𝑃�⃗�
𝑄 = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦
Here: 0 = �⃗� 𝑢⃗ = (𝑃�⃗�) (𝑃𝑒⃗) = �⃗� 𝑒⃗ = 𝑦⃗

Since 𝑃 has orthogonal columns, preserve dot product
𝑄 = 𝜆 𝑦 + ⋯ + 𝜆 𝑦

Minimum: 𝜆 for �⃗� = 𝑒 ⃗(�⃗� = ±𝑢 ⃗)

Maximum: 𝜆 for �⃗� = 𝑒⃗(�⃗� = ±𝑢⃗)

Ex.3
Calculate the maximum and minimum values of Q(�⃗�) = �⃗� 𝐴�⃗�, �⃗� ∈ ℝ , subject to ‖�⃗�‖= 1 and �⃗� 𝑢⃗ = 0, and identify points 
where these values are obtained.

𝑄(�⃗�) = 𝑥 + 2𝑥 𝑥 , 𝑢⃗ =
1
0
0

From example 2:
Maximum is 1, attained for �⃗� = ±𝑢⃗

Ex.4
Calculate the maximum and minimum values of Q(�⃗�) = �⃗� 𝐴�⃗�, �⃗� ∈ ℝ , subject to ‖�⃗�‖= 5, and identify points where these 
values are obtained.

𝑄(�⃗�) = 𝑥 + 2𝑥 𝑥

Eigenvalues: 1, 1, -1

Max 𝑄(�⃗�) = 25
‖�⃗�‖= 5
2 points of view to see this:

Define �⃗� by �⃗� = 𝑃�⃗�, Q = 𝜆 𝑦 + 𝜆 𝑦 + ⋯ + 𝜆 𝑦1)
𝜆 (𝑦 + 𝑦 + 𝑦 ) ≤ 𝑄 ≤ 𝜆 (𝑦 + 𝑦 + 𝑦 )

= ‖�⃗�‖= ‖�⃗�‖= 25

‖�⃗�‖= 5, 𝑥 =
⃗

‖⃗‖
=

⃗
1)

�⃗� = 5𝑥, ‖𝑥‖= 1
𝑄(�⃗�) = 𝑄(5�⃗�) = 25𝑄(�⃗�)
→ max 𝑄(�⃗�) = 25 max 𝑄(𝑥)

‖�⃗�‖= 5, ‖𝑥‖= 1



Notes:

Section 7.4: The Singular Value Decomposition

Ex.1
The linear transform whose standard matrix is

𝐴 =
1

√2

1 −1
1 1

2√2 0

0 √2
=

2 −1
2 1

Maps the unit circle in ℝ to an ellipse, as shown below. Identify the unit vector �⃗� in which ‖𝐴�⃗�‖is maximized and compute 
this length.
Goal: max‖𝐴�⃗�‖

‖�⃗�‖= 1
Remark: max‖𝐴�⃗�‖and max‖𝐴�⃗�‖occur at the same place for �⃗�
‖𝐴�⃗�‖= (𝐴�⃗�) (𝐴�⃗�) = (𝐴�⃗�) 𝐴�⃗� = �⃗�𝐴 𝐴�⃗� = �⃗� 𝐴 𝐴�⃗�: it’s quadratic form, so we can just use the eigenvalues of 𝐴 𝐴

Ex.1 - Solution

𝐴 =
2 −1
2 1

𝐴 𝐴 =
2 2

−1 1
2 −1
2 1

=
8 0
0 2

Eigenvalues/Eigenvectors:

8, 1
0

2, 0
1

→ max‖𝐴�⃗�‖= 8 attained at �⃗� = ±𝑒⃗
‖�⃗�‖= 1

⇒ max‖𝐴�⃗�‖= √8 = 2√2 attained at �⃗� = ±𝑒⃗
‖�⃗�‖= 1

Singular Values
The matrix 𝐴 𝐴 is always symmetric, with non-negative eigenvalues 𝜆 ≥ 𝜆 ≥ ⋯ 𝜆 ≥ 0. Let {𝑣⃗, … , 𝑣⃗} be the 
associated orthonormal eigenvectors. Then

𝐴𝑣⃗ =𝐴𝑣⃗𝐴𝑣 =⃗𝐴𝑣�⃗�𝑣 =⃗ 𝑣⃗ 𝐴 𝐴𝑣⃗ = 𝜆 𝑣⃗ 𝑣⃗ = 𝜆

If the 𝐴 has rank 𝑟, then {𝐴𝑣⃗, … , 𝐴𝑣⃗} is an orthogonal basis for Col(𝐴):
For 1 ≤ 𝑗 < 𝑘 ≤ 𝑟:

𝐴𝑣⃗ 𝐴𝑣 ⃗ =𝐴𝑣⃗𝐴𝑣 ⃗ = 𝑣⃗ 𝐴 𝐴𝑣 ⃗ = 𝜆 𝑣⃗ 𝑣 ⃗ = 0

Definition: 𝜎 = 𝜆 ≥ 𝜎 = 𝜆 ⋯ ≥ 𝜎 = 𝜆 are the singular values of 𝐴.

To sum up: 
We have: 𝐴𝑣⃗= 𝜆 = 𝜎

If 𝑖 ≠ 𝑗: 𝐴𝑣⃗ 𝐴𝑣⃗ = 0

𝐴𝑣⃗ … 𝐴𝑣⃗ ∈ Col(𝐴)
�⃗� ∈ ℝ : �⃗� = 𝑐 𝑣⃗ + ⋯ + 𝑐 𝑣⃗

𝐴�⃗� = 𝑐 𝐴𝑣⃗ + ⋯ + 𝑐 𝐴𝑣⃗
⇒ Span(𝐴𝑣⃗, … , 𝐴𝑣⃗) = Col(𝐴)

Say, dim Col(𝐴) = 𝑟
Span(𝐴𝑣⃗, … , 𝐴𝑣⃗) = Span(𝐴𝑣⃗, … , 𝐴𝑣⃗)

→ {𝐴𝑣⃗, … , 𝐴𝑣⃗} orthogonal basis of Col(𝐴)

The SVD
𝐴⏟
×

= 𝑈⏟
×

Σ⏟
×

𝑉
×

Theorem: Singular Value Decomposition
A 𝑚 × 𝑚 matrix with rank 𝑟 and non-zero singular values 𝜎 ≥ 𝜎 ≥ ⋯ ≥ 𝜎 has a decomposition 𝑈Σ𝑉 where

Σ =
𝐷 0
0 0 ×

=

⎣
⎢
⎢
⎢
⎡
𝜎 0 ⋯
0 𝜎 ⋯

0
⋮ 0

⋮ ⋮ ⋱
0 0 ⋯

0

𝜎
0⎦

⎥
⎥
⎥
⎤

𝑈 is an 𝑚 × 𝑛 orthogonal matrix, and 𝑉 is an 𝑛 × 𝑛 orthogonal matrix.

𝐴 ∈ ℝ ×

→ 𝐴 𝐴 ∈ ℝ × has eigenvlaues 𝜆 ≥ 𝜆 ≥ ⋯ 𝜆 ≥
{𝑣⃗, … , 𝑣⃗} orthonormal basis of eigenvectors
{𝐴𝑣⃗, … , 𝐴𝑣⃗} orthogonal basis of Col(𝐴)

Define: 𝑢⃗ =
‖ ⃗‖

𝐴𝑣⃗ = 𝐴𝑣⃗ for 1 ≤ 𝑖 ≤ 𝑟

Define 𝑈 =
𝑢⃗, … , 𝑢⃗

( )

𝑢 ⃗, … , 𝑢 ⃗
( ) ( )

𝑉 = (𝑣⃗, … , 𝑣⃗)

Σ =

⎝

⎜⎜
⎛

𝑣⃗
⋱

𝑣⃗
0

⋱
0⎠

⎟⎟
⎞

We want to prove that:
𝐴 = 𝑈Σ𝑉 ⟺ 𝐴𝑉 = 𝑈Σ
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𝐴𝑉 = (𝐴𝑣⃗, … , 𝐴𝑣⃗) = (𝑣⃗𝑢⃗ ⋯ 𝑣⃗𝑢⃗ 0⃗ ⋯ 0⃗)

𝑈Σ = (𝑢⃗, … , 𝑢 ⃗)

⎝

⎜⎜
⎛

𝑣⃗
⋱

𝑣⃗
0

⋱
0⎠

⎟⎟
⎞

= (𝑣⃗𝑢⃗ ⋯ 𝑣⃗𝑢⃗ 0⃗ ⋯ 0⃗)

→ 𝐴𝑉 = 𝑈Σ
⟺ 𝐴 = 𝑈Σ𝑉 = 𝑈Σ𝑉

𝑀 = 𝑈 Σ 𝑉∗

Algorithm to find the SVD of 𝑨
Suppose 𝐴 is 𝑚 × 𝑛 has rank 𝑟 ≤ 𝑛.

Compute the squared singular values of 𝐴 𝐴, 𝜎1.
Compute the unit singular vector of 𝐴 𝐴, 𝑣⃗, use them to form 𝑉.2.
Compute an orthonormal basis for Col(𝐴) using3.
𝑢⃗ = 𝐴𝑣⃗, 𝑖 = 1,2, … 𝑟

Extend the set {𝑢⃗} to form an orthonormal basis for ℝ , use the bassi for form 𝑈.

Ex.2
Write down the singular value decomposition for
2 0
0 −3
0 0
0 0

=

Ex.3
Construct the singular value decomposition of

𝐴 =
1 −1

−2 2
2 −2

(It has rank 1.)



Constrained Optimization
𝑄(�⃗�) = 𝑥 + 2𝑥
What is max 𝑄 (�⃗�) where �⃗� ∈ ℝ ? (unconstrained optimization)
max 𝑄(�⃗�) = ∞

What is max 𝑄(�⃗�) where ‖�⃗�‖= 1? (constrained optimization)

In general, 𝑄(�⃗�) = �⃗� 𝐴�⃗�, 𝐴 is symmetric
max 𝑄(�⃗�) = 𝜆 = max{𝜆: 𝜆 eigenvalue of 𝐴}
And 𝜆 = 𝑄(𝑥 ⃗) where ‖𝑥 ⃗‖= 1 and 𝐴𝑥 ⃗ = 𝜆 𝑥 ⃗

𝑄(�⃗�) = �⃗� 𝐴�⃗� = �⃗�
1 0
0 2

�⃗�

→ 𝜆 = 2

max 𝑄(�⃗�)
‖⃗‖

= 2 attained at 0
1

and 0
−1

Worksheet 7.3 Constrained Optimization
Worksheet Exercises

Indicate whether the statements are true or false.
The largest value of a positive definite quadratic form �⃗� 𝐴�⃗� is the largest eigenvalue of 𝐴.

Falsei.
a.

The largest value of a positive definite quadratic form �⃗� 𝐴�⃗� subject to ‖�⃗�‖= 1 is the largest value on the diagonal of 𝐴.
Falsei.

b.

1.

Calculate the maximum and minimum values of the quadratic form �⃗� 𝐴�⃗� subject to ‖�⃗�‖= 1. Identify where this maximum is obtained.
𝑄(�⃗�) = 4𝑥 + 𝑥 + 4𝑥 𝑥 + 3𝑥 , �⃗� ∈ ℝa.

𝐴 =
4 2 0
2 1 0
0 0 3

, 𝐴 − 𝜆𝐼 =
4 − 𝜆 2 0

2 1 − 𝜆 0
0 0 3 − 𝜆

= (3 − 𝜆)(𝜆 − 5𝜆) = 0,3,5. Max = 5, Min = 0.b.

𝐴 − 5𝐼 = Null
−1 2 0
2 −4 0
0 0 −2

=
2
1
0

⇒
1

√5

2
1
0

= 𝑥 , max 𝑄(�⃗�)
‖⃗‖

= 𝑄(𝑥 )c.

𝐴 − 0𝐼 = Null
4 2 0
2 1 0
0 0 3

=
1

−2
0

⇒
1

√5

1
−2
0

= 𝑥 , min 𝑄(�⃗�)
‖⃗‖

= 𝑄(𝑥 )d.

2.

Calculate the maximum and minimum values of the quadratic form 𝑄 subject to ‖�⃗�‖= 1 and �⃗� 𝑢 = 0.

𝑄(�⃗�) = 4𝑥 + 𝑥 + 4𝑥 𝑥 + 3𝑥 , 𝑢 =
2
1
0

a.

𝐴 − 3𝐼 =
1 2 0
2 −2 0
0 0 0

⇒ 𝑥 =
0
0
1

b.

max 𝑄(�⃗�)
‖⃗‖

⃗ ⃗

= 𝑄(𝑥 )c.

min 𝑄(�⃗�)
‖⃗‖

⃗ ⃗

= 𝑄(𝑥 )d.

3.

If possible, give example of the following.
A quadratic form 𝑄: ℝ ↦ ℝ, that has the maximum value 12, subject to the constraint that ‖�⃗�‖= 1.

𝑄(�⃗�) = 𝑥 + 12𝑥 + 4𝑥i.
a.

A quadratic form 𝑄: ℝ ↦ ℝ, that has the maximum value 4 at two distinct locations, subject to the constraint that ‖�⃗�‖= 1.
𝑄(�⃗�) = 4𝑥 + 2𝑥 + 4𝑥i.

b.

4.
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Notes:

𝑀�⃗� = 𝑈Σ𝑉 �⃗�

Ex.2
Write down the singular value decomposition for
2 0
0 −3
0 0
0 0

= 𝑈Σ𝑉

1st: Σ

𝐴 𝐴 =
2 0
0 −3

0 0
0 0

2 0
0 −3
0 0
0 0

=
4 0
0 9

→ 𝜎 = 3, 𝜎 = 2

⇒ Σ =

3 0
0 2
0 0
0 0

2nd: 𝑉

𝜆 = 9: 𝐴 𝐴 − 9𝐼 =
−5 0
0 0

: 𝑣⃗ =
0
1

𝜆 = 4: 𝑣⃗ =
1
0
: 𝑉 =

0 1
1 0

3rd: 𝑈

𝑈 = (𝑢⃗ 𝑢⃗ 𝑢⃗ 𝑢⃗)

𝑢⃗ =
1

𝜎
𝐴𝑣⃗ =

1

3

0
−3
0
0

=

0
−1
0
0

𝑢⃗ =
1

𝜎
𝐴𝑣⃗ =

1

2

2
0
0
0

=

1
0
0
0

Here we can take:

𝑢⃗ =

0
0
1
0

, u⃗ =

0
0
0
1

𝑈 =

0 1
−1 0

0 0
0 0

0 0
0 0

1 0
0 1

and: 𝐴 = 𝑈Σ𝑉
with 𝑈, Σ, 𝑉 defined above.

Ex.3
Construct the singular value decomposition of

𝐴 =
1 −1

−2 2
2 −2

(It has rank 1.)

1st: Σ

𝐴 𝐴 =
1 −2 2

−1 2 −2

1 −1
−2 2
2 −2

=
9 −9

−9 9

→ 𝜎 = 3√2

⇒ Σ =
3√2 0

0 0
0 0

2nd: 𝑉

𝜆 = 18: 𝐴 𝐴 − 18𝐼 =
−9 −9
−9 −9

: 𝑣⃗ =
1

√2

1
−1

𝜆 = 0: by orthogonality: 𝑣⃗ =
1

√2

1
1

→ 𝑉 =
1

√2

1 1
−1 1

3rd: 𝑈

𝑈 = (𝑢⃗ 𝑢⃗ 𝑢⃗)

𝑢⃗ =
1

𝜎
𝐴𝑣⃗ =

1

3√2

1 −1
−2 2
2 −2

1

√2

1
−1

=
1

6

2
−4
4

=
1

3

1
−2
2

Here we know 𝑢⃗, 𝑢⃗ are orthogonal to 𝑢⃗:
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�⃗� ∈ Null(1 −2 2)

�⃗� =

𝑥
𝑥
𝑥

=
2𝑥 − 2𝑥
𝑥

𝑥
= 𝑥

2
1
0

+ 𝑥
−2
0
1

Problem: 
2
1
0

and 
−2
0
1

are not orthogonal

→ Gram-Schmidt

𝑢⃗ =
2
1
0

𝑢⃗ =
−2
0
1

−

−2
0
1

2
1
0

2
1
0

2
1
0

2
1
0

=
−2
0
1

+
4

5

2
1
0

→ 𝑢⃗ =
1

5

−2
4
5

→ 𝑈 =

⎝

⎜⎜
⎛

1
3

2
3 − 2

3√5

− 2
3

1
√5

4
3√5

2
3 0 5

3√5 ⎠

⎟⎟
⎞

⇒ 𝐴 = 𝑈Σ𝑉
with 𝑈, Σ, 𝑉 defined above.

Applications of the SVD
The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the 
first four).

Estimating the rank and condition number of a matrix•
Constructing bases for the four fundamental spaces•
Computing the pseudoinverse of a matrix•
Linear least squares problems•
Non-linear least-squares•

Normal Equations: 𝐴 𝐴�⃗� = 𝐴 �⃗�

if 𝐴 = 𝑈Σ𝑉
𝐴 𝐴 = (𝑈Σ𝑉 ) 𝑈Σ𝑉 = VΣ 𝑈 𝑈Σ𝑉 = 𝑉 Σ Σ

⃗
⋱

⃗

𝑉 : orthogonal diagonalization of 𝐴 𝐴

The Condition Number of a Matrix
If 𝐴 is an invertible 𝑛 × 𝑛 matrix, the ratio

𝜎

𝜎
is the condition number of 𝐴.

Note that:
The condition number of a matrix describes the sensitivity of a solution to 𝐴�⃗� = �⃗� is to errors in 𝐴.•
We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course.•

Ex.4

For 𝐴 = 𝑈Σ𝑉∗ determines the rank of 𝐴, and orthonormal bases for Null(𝐴) and Col(𝐴)

𝑈 =

0 0
0 1

1 0
0 0

0 0
1 0

0 −1
0 0

Σ =

4 0
0 3

0 0 0
0 0 0

0 0
0 0

√5 0 0
0 0 0

𝑉 =

⎣
⎢
⎢
⎢
⎡

0 1
0 0

0 0 0
1 0 0

√0.2 0
0 0

−√0.8 0

0 0 √0.8
0 1 0

0 0 √0.2⎦
⎥
⎥
⎥
⎤

Rank(𝐴) = 3 (𝑟 , 𝑟 , 𝑟 ≠ 0)

{𝑢⃗, 𝑢⃗, 𝑢⃗} basis for Col(𝐴)

{𝑢⃗} =

0
0

−1
0

is an orthogonal bassi for Col(𝐴) = Null(𝐴 )

Rank Theorem: dim Null(𝐴) = 2
We know: ‖𝐴𝑣⃗‖= 𝑣⃗

⇒ {𝑣⃗, 𝑣⃗} is an orthonormal basis for Null(𝐴)

0
0
1
0

,

−√0.8
0
0

√0.2



The Four Fundamental Spaces
𝐴𝑣⃗ = 𝜎 𝑢⃗1.
𝑣⃗, … , 𝑣⃗ is an orthonormal basis for Row(𝐴)2.
𝑢⃗, … , 𝑢⃗ is an orthonormal basis for Col(𝐴)3.
𝑣 ⃗, … , 𝑣⃗ is an orthonormal basis for Null(𝐴)4.
𝑢 ⃗, … , 𝑢 ⃗ is an orthonormal basis for Null(𝐴 )5.

𝑈 =
𝑢⃗ ⋯ 𝑢⃗

( )

𝑢 ⃗ ⋯ 𝑢 ⃗
( )

𝑉 =
𝑣⃗ ⋯ 𝑣⃗

( )

𝑣 ⃗ ⋯ 𝑣⃗
( )

The Spectral Decomposition of a Matrix
The SVD can also be used to construct the spectral decomposition for any matrix with rank 𝑟

𝐴 = 𝜎 𝑢⃗𝑢⃗

Where 𝑢⃗, 𝑢⃗ are the sth columns of 𝑈 and 𝑉 respectively.
For the case when 𝐴 = 𝐴 , we obtain the same spectral decomposition that we encountered in Section 7.2.

→ Check that it works with Examples 2 and 3.



SVD
𝐴 = 𝑈Σ𝑉
𝑈, 𝑉: orthogonal
Σ: diagonal with non − increasing entries

𝐴: 𝑚 × 𝑛
Σ: 𝑚 × 𝑚
𝑉: 𝑛 × 𝑛

if 𝐴 = 𝑈Σ𝑉
𝐴 𝐴 = (𝑈Σ𝑉 ) 𝑈Σ𝑉 = VΣ 𝑈 𝑈Σ𝑉 = 𝑉 Σ Σ

⃗
⋱

⃗

𝑉 : orthogonal diagonalization of 𝐴 𝐴

⇒ columns of 𝑉 are the ortthonormal set of eigenvectors (in decreasing order of eigenvalues)

Worksheet 7.4, The Singular Value Decomposition
Worksheet Exercises

Indicate whether the statements are true or false.
Every matrix has a singular value decomposition.

Truei.
a.

If 𝐴 is symmetric, then its factorization 𝐴 = 𝑈𝐷𝑈 is also its 𝑆𝑉𝐷.
True if entries in 𝐷 are non-increasing (𝑈 = 𝑉)i.

b.

The maximum value of ‖𝐴�⃗�‖subject to‖�⃗�‖= 1 is 𝜎 .
‖𝐴�⃗�‖= ‖𝑈Σ𝑉 �⃗�‖

= �⃗� 𝐴 𝐴�⃗� = 𝑄(�⃗�)
max 𝑄(�⃗�) = 𝜆 (𝐴 𝐴) = 𝜎 , for ‖�⃗�‖= 1

⇒ max‖𝐴�⃗�‖= 𝜎 , for ‖�⃗�‖= 1

i.

Trueii.

c.

1.

Construct the SVD of2.

𝐴 =
4 −2
2 −1
0 0

𝐴 𝐴 =
20 −10

−10 5
𝑝(𝜆) = (20 − 𝜆)(5 − 𝜆) − 100 = 𝜆 − 25𝜆 = 𝜆(𝜆 − 25)

𝜆 = 0:
1
2

eigenvector

𝜆 = 25: 𝐴 𝐴 − 25𝐼 =
−5 −10

−10 −20
−2
1

eigenvector

𝑉 =
1

√5

−2 1
1 2

, 𝜎 = 5, 𝜎 = 0

⇒ Σ =
5 0
0 0
0 0

𝑢 =
1

𝜎
𝐴𝑣 =

1

5

⎣
⎢
⎢
⎢
⎢
⎡−

10

√5

−
5

√5
0 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡−

2

√5

−
1

√5
0 ⎦

⎥
⎥
⎥
⎤

𝑢 =

⎣
⎢
⎢
⎢
⎡−

2

√5

−
1

√5
0 ⎦

⎥
⎥
⎥
⎤

, 𝑢 =
0
0
1

⇒ 𝑈 = [𝑢 𝑢 𝑢 ]

Find a unit vector �⃗� for which 𝐴�⃗� has maximum length

𝐴 =
2 −1
2 2

𝐴 𝐴 =
8 2
2 5

𝑝(𝜆) = (8 − 𝜆)(5 − 𝜆) − 4 = 𝜆 − 13𝜆 + 36 = (𝜆 − 9)(𝜆 − 4)
⇒ 𝜆 (𝐴 𝐴) = 9

𝐴 𝐴 − 9𝐼 =
−1 2
2 −4

⇒
1

√5

2
1

2 −1
2 2

1

√5

2
1

=
1

√5

3
6

=
√45

√5
= 3 = 𝜎

3.

By inspection, construct an SVD of the diagonal matrix

𝐴 =
2 0
0 3

𝐴 𝐴 =
4 0
0 9

Eigenvalue of 4: ± 1
0

Eigenvalue of 9: ± 0
1

⇒ 4 SVDs

4.

The SVD of a matrix is not unique: how many different SVDs can you create from the matrix above?
Written Explanation Exercise Let 𝐴 be an 𝑚 × 𝑛 matrix of rank 𝑟. If 𝑟 is much smaller than 𝑚 and 𝑛, explain how the following version of 
the singular value decomposition

5.
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𝐴 = 𝜎 𝑢 𝑢 + ⋯ + 𝜎 𝑢 𝑢
gives an efficient way to store 𝐴 (this is called data compression).

Size of 𝐴: 𝑚 × 𝑛
Size of SVD decomposition: 𝑟(𝑚 + 𝑛)


